Bt_2024v15n4

Bt Research 2024, Vol.15, No.4, 193-203 http://microbescipublisher.com/index.php/bt 203 Ren Y.C., Zhou X.L., Dong Y., Zhang J., Wang J.M., and Yang M.S., 2021, Exogenous gene expression and insect resistance in dual Bt toxin Populus×euramericana ‘Neva’ transgenic plants, Frontiers in Plant Science, 12: 660226. https://doi.org/10.3389/fpls.2021.660226 Storer N., Thompson G., and Head G., 2012, Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops, GM Crops and Food, 3(3): 154-162. https://doi.org/10.4161/gmcr.20945 Sun X., Gong Y., Ali S., and Hou M., 2018, Mechanisms of resistance to thiamethoxam and dinotefuran compared to imidacloprid in the brown planthopper: roles of cytochrome P450 monooxygenase and a P450 gene CYP6ER1, Pesticide Biochemistry and Physiology, 150: 17-26. https://doi.org/10.1016/j.pestbp.2018.06.014 Tabashnik B. E., Fabrick J. A., and Carrière Y., 2023, Global patterns of insect resistance to transgenic Bt crops: the first 25 years, Journal of Economic Entomology, 116: 297-309. https://doi.org/10.1093/jee/toac183 Tabashnik B., Brévault T., and Carrière Y., 2013, Insect resistance to Bt crops: lessons from the first billion acres, Nature Biotechnology, 31: 510-521. https://doi.org/10.1038/nbt.2597 Tabashnik B., Zhang M., Fabrick J., Wu Y.D., Gao M.J., Huang F.N., Wei J.Z., Zhang J., Yelich A., Unnithan G., Bravo A., Soberón M., Carrière Y., and Li X.C., 2015, Dual mode of action of Bt proteins: protoxin efficacy against resistant insects, Scientific Reports, 5: 15107. https://doi.org/10.1038/srep15107 Tay W., Mahon R., Heckel D., Walsh T., Downes S., James W., Lee S., Reineke A., Williams A., and Gordon K., 2015, Insect resistance to Bacillus thuringiensis toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily a protein, PLoS Genetics, 11(11): e1005534. https://doi.org/10.1371/journal.pgen.1005534 Wang Y., Wang J., Fu X., Nageotte J., Silverman J., Bretsnyder E., Chen D., Rydel T., Bean G., Li K., Kraft E., Gowda A., Nance A., Moore R., Pleau M., Milligan J., Anderson H., Asiimwe P., Evans A., Moar W., Martinelli S., Head G., Haas J., Baum J., Yang F., Kerns D., and Jerga A., 2019, Bacillus thuringiensis Cry1Da_7 and Cry1B.868 protein interactions with novel receptors allow control of resistant fall armyworms, Spodoptera frugiperda (J.E. Smith), Applied and Environmental Microbiology, 85(16): e00579-19. https://doi.org/10.1128/AEM.00579-19 Wei J.Z., Zhang Y.L., and An S.H., 2019, The progress in insect cross-resistance among Bacillus thuringiensis toxins, Archives of Insect Biochemistry and Physiology, 102(3): e21547. https://doi.org/10.1002/arch.21547 Wu Y.D., 2014, Chapter Six-Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis, Advances in Insect Physiology, 47: 297-342 https://doi.org/10.1016/B978-0-12-800197-4.00006-3 Xiao Y.T., Dai Q., Hu R.Q., Pacheco S., Yang Y., Liang G., Soberón M., Bravo A., Liu K.Y., and Wu K.M., 2017, A single point mutation resulting in cadherin mislocalization underpins resistance against Bacillus thuringiensis toxin in Cotton Bollworm., The Journal of Biological Chemistry, 292: 2933-2943. https://doi.org/10.1074/jbc.M116.768671 Xiao Z., Yao X., Bai S., Wei J., and An S., 2023, Involvement of an enhanced immunity mechanism in the resistance to Bacillus thuringiensis in Lepidopteran pests, Insects, 14(2): 151. https://doi.org/10.3390/insects14020151 Zafar M., Razzaq A., Farooq M., Rehman A., Firdous H., Shakeel A., Mo H., and Ren M., 2020, Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and silencing), Journal of Cotton Research, 3: 1-13. https://doi.org/10.1186/s42397-020-00074-0 Zeng X.C., Pan Y.O., Tian F.Y., Li J.Y., Xu H.F., Liu X.M., Chen X.W., Gao X.W., Peng T.F., Bi R., and Shang Q.L., 2021, Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover, Pesticide Biochemistry and Physiology, 176: 104879. https://doi.org/10.1016/j.pestbp.2021.104879 Zhu B., Sun X., Nie X.M., Liang P., and Gao X.W., 2019, MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects, Insect Biochemistry and Molecular Biology, 117: 103283. https://doi.org/10.1016/j.ibmb.2019.103283

RkJQdWJsaXNoZXIy MjQ4ODYzNA==