Bt_2024v15n4

Bt Research 2024, Vol.15, No.4, 193-203 http://microbescipublisher.com/index.php/bt 202 Gahan L., Pauchet Y., Vogel H., and Heckel D., 2010, An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin, PLoS Genetics, 6(12): e1001248. https://doi.org/10.1371/journal.pgen.1001248 Gassmann A., and Reisig D., 2022, Management of insect pests with Bt crops in the United States, Annual Review of Entomology, 68(1): 31-49. https://doi.org/10.1146/annurev-ento-120220-105502 Guan F., Zhang J., Shen H., Wang X., Padovan A., Walsh T., Tay W., Gordon K., James W., Czepak C., Otim M., Kachigamba D., and Wu Y., 2020, Whole‐genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda, Insect Science, 28(3): 627-638. https://doi.org/10.1111/1744-7917.12838 Guo Z.J., Sun D., Kang S., Zhou J.L., Gong L.J., Qin J.Y., Guo L., Zhu L.H., Bai Y., Luo L., and Zhang Y.J., 2019, CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth Plutella xylostella (L.), Insect Biochemistry and Molecular Biology, 107: 31-38. https://doi.org/10.1016/j.ibmb.2019.01.009 Heckel D.G., 2021, The essential and enigmatic role of ABC transporters in Bt resistance of noctuids and other insect pests of agriculture, Insect, 12(5): 389. https://doi.org/10.3390/insects12050389 Huang F., Andow D., and Buschman L., 2011, Success of the high‐dose/refuge resistance management strategy after 15 years of Bt crop use in North America, Entomologia Experimentalis et Applicata, 140(1): 1-16. https://doi.org/10.1111/j.1570-7458.2011.01138.x Huang Y.X., Qin Y., Feng H.Q., Wan P., and Li Z.H., 2017, Modeling the evolution of insect resistance to one- and two-toxin Bt-crops in spatially heterogeneous environments, Ecological Modelling, 347: 72-84. https://doi.org/10.1016/J.ECOLMODEL.2017.01.001 Jin L., Zhang H.N., Lu Y.H., Yang Y.H., Wu K.M., Tabashnik B., and Wu Y.D., 2014, Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops, Nature Biotechnology, 33: 169-174. https://doi.org/10.1038/nbt.3100 Jurat-Fuentes J., Heckel D., and Ferré J., 2021, Mechanisms of resistance to insecticidal proteins fromBacillus thuringiensis, Annual Review of Entomology, 66: 121-140. https://doi.org/10.1146/annurev-ento-052620-073348 Kain W., Cotto-Rivera R., and Wang P., 2022, Resistance of cabbage loopers to Bacillus thuringiensis (Bt) toxin Cry1F and to Dual-Bt toxin widestrike cotton plants, Applied and Environmental Microbiology, 88(20): e01194-22. https://doi.org/10.1128/aem.01194-22 Lazarte J., Valacco M., Moreno S., Salerno G., and Berón C., 2021, Molecular characterization of a Bacillus thuringiensis strain from argentina toxic against lepidoptera and coleoptera based on its whole-genome and Cry protein analysis, Journal of Invertebrate Pathology, 183: 107563. https://doi.org/10.1016/j.jip.2021.107563 Li Y.J., Wang C., Ge L., Hu C., Wu G.G., Sun Y., Song L.L., Wu X., Pan A.H., Xu Q.Q., Shi J.L., Liang J.G., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Lu K., Song Y., and Zeng R., 2020, The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics, Current Opinion in Insect Science, 43: 103-107. https://doi.org/10.1016/j.cois.2020.11.004 Maksimov I., Blagova D., Veselova S., Sorokan A., Burkhanova G., Cherepanova E., Sarvarova E., Rumyantsev S., Alekseev V., and Khayrullin R., 2020, Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin fromBacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorumBerk. and greenbug Schizaphis graminumRond., Biological Control, 144: 104242. https://doi.org/10.1016/j.biocontrol.2020.104242 Naik V., Kumbhare S., Kranthi S., Satija U., and Kranthi K., 2018, Field-evolved resistance of pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India, Pest Management Science, 74(11): 2544-2554. https://doi.org/10.1002/ps.5038 Nauen R., Bass C., Feyereisen R., and Vontas J., 2021, The role of cytochrome P450s in insect toxicology and resistance, Annual Review of Entomology, 67: 105-124. https://doi.org/10.1146/annurev-ento-070621-061328 Oliveira J., Negri B., Hernández-Martínez P., Basso M., and Escriche B., 2023, Mpp23Aa/Xpp37Aa insecticidal proteins fromBacillus thuringiensis (Bacillales: Bacillaceae) are highly toxic to Anthonomus grandis (Coleoptera: Curculionidae) larvae, Toxins, 15(1): 55. https://doi.org/10.3390/toxins15010055 Paddock K., Pereira A., Finke D., Ericsson A., Hibbard B., and Shelby K., 2021, Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore, Molecular Ecology, 30: 5438-5453. https://doi.org/10.1111/mec.15875 Pinos D., Andrés-Garrido A., Ferré J., and Hernández-Martínez P., 2021, Response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins, Microbiology and Molecular Biology Reviews, 85(1): 32. https://doi.org/10.1128/MMBR.00007-20

RkJQdWJsaXNoZXIy MjQ4ODYzNA==