Bt_2024v15n4

Bt Research 2024, Vol.15, No.4, 183-192 http://microbescipublisher.com/index.php/bt 192 Magno-Pérez-Bryan M., Martínez-García P., Hierrezuelo J., Rodríguez-Palenzuela P., Arrebola E., Ramos C., Vicente A., Pérez-García A., and Romero D., 2015, Comparative genomics within the Bacillus genus reveal the singularities of two robust Bacillus amyloliquefaciens biocontrol strains, Molecular Plant-Microbe Interactions: MPMI, 28(10): 1102-16. https://doi.org/10.1094/MPMI-02-15-0023-R Masri L., Branca A., Sheppard A., Papkou A., Lähnemann D., Günther P., Prahl S., Saebelfeld M., Hollensteiner J., Liesegang H., Brzuszkiewicz E., Daniel R., Michiels N., Schulte R., Kurtz J., Rosenstiel P., Telschow A., Bornberg-Bauer E., and Schulenburg H., 2015, Host–pathogen coevolution: the selective advantage of Bacillus thuringiensis virulence and its Cry toxin genes, PLoS Biology, 13(6): e1002169. https://doi.org/10.1371/journal.pbio.1002169 Melo A., Soccol V., and Soccol C., 2016, Bacillus thuringiensis: mechanism of action resistance and new applications: a review, Critical Reviews in Biotechnology, 36: 317-326. https://doi.org/10.3109/07388551.2014.960793 Pacheco S., Gómez I., Chiñas M., Sánchez J., Soberón M., and Bravo A., 2021, Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes, Frontiers in Microbiology, 12: 758314. https://doi.org/10.3389/fmicb.2021.758314 Quan M., Xie J., Liu X., Li Y., Rang J., Zhang T., Zhou F., Xia L., Hu S., Sun Y., and Ding X., 2016, Comparative analysis of genomics and proteomics in the new isolated Bacillus thuringiensis X022 revealed the metabolic regulation mechanism of carbon flux following Cu2+ treatment, Frontiers in Microbiology, 7: 792. https://doi.org/10.3389/fmicb.2016.00792 Rang J., He H., Wang T., Ding X.Z., Zuo M.X., Quan M.F., Sun Y.J., Yu Z.Q., Hu S.B., and Xia L.Q., 2015, Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718, PLoS ONE, 10(3): e0119065. https://doi.org/10.1371/journal.pone.0119065 Rasigade J., Hollandt F., and Wirth T., 2018, Genes under positive selection in the core genome of pathogenic Bacillus cereus group members, Infection Genetics and Evolution, 65: 55-64. https://doi.org/10.1016/j.meegid.2018.07.009 Reyaz A., Balakrishnan N., and Udayasuriyan V., 2019, Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes, Microbial Pathogenesis, 134: 103553. https://doi.org/10.1016/j.micpath.2019.103553 Sevillya G., Adato O., and Snir S., 2020, Detecting horizontal gene transfer: a probabilistic approach, BMC Genomics, 21: 106. https://doi.org/10.1186/s12864-019-6395-5 Shikov A., Malovichko Y., Lobov A., Belousova M., Nizhnikov A., and Antonets K., 2021, The distribution of several genomic virulence determinants does not corroborate the established serotyping classification of Bacillus thuringiensis, International Journal of Molecular Sciences, 22(5): 2244. https://doi.org/10.3390/ijms22052244 Singh A., Gaur M., Sharma V., Khanna P., Bothra A., Bhaduri A., Mondal A., Dash D., Singh Y., and Misra R., 2021, Comparative genomic analysis of Mycobacteriaceae reveals horizontal gene transfer-mediated evolution of the CRISPR-Cas system in the Mycobacterium tuberculosis complex, mSystems, 6(1): e00934-20. https://doi.org/10.1128/mSystems.00934-20 Wang Z.Y., Wang K., Bravo A., Soberón M., Cai J., Shu C.L., and Zhang J., 2020, Coexistence of cry9 with the vip3Agene in an identical plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity, Journal of Agricultural and Food Chemistry, 68(47): 14081-14090. https://doi.org/10.1021/acs.jafc.0c05304 Zeng Q.C., Xie J.B., Li Y., Gao T.T., Xu C., and Wang Q., 2018, Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits, Scientific Reports, 8: 17009. https://doi.org/10.1038/s41598-018-35300-y Zheng J.S., Gao Q.L., Liu L.L., Liu H.L., Wang Y.Y., Peng D.H., Ruan L.F., Raymond B., and Sun M., 2017, Comparative genomics of Bacillus thuringiensis reveals a path to specialized exploitation of multiple invertebrate hosts, mBio, 8(4): 14. https://doi.org/10.1128/mBio.00822-17 Zuo W., Li J., Zheng J., Zhang L., Yang Q., Yu Y., Zhang Z., and Ding Q., 2020, Whole genome sequencing of a multidrug-resistant Bacillus thuringiensis HM-311 obtained from the radiation and heavy metal-polluted soil, Journal of Global Antimicrobial Resistance, 21: 275-277. https://doi.org/10.1016/j.jgar.2020.04.022

RkJQdWJsaXNoZXIy MjQ4ODYzNA==