Bt_2024v15n4

Bt Research 2024, Vol.15, No.4, 183-192 http://microbescipublisher.com/index.php/bt 191 References Alcaraz L., Moreno-Hagelsieb G., Eguiarte L., Souza V., Herrera-Estrella L., and Olmedo G., 2010, Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics, BMC Genomics, 11: 332-332. https://doi.org/10.1186/1471-2164-11-332 Baek I., Lee K., Goodfellow M., and Chun J., 2019, Comparative genomic and phylogenomic analyses clarify relationships within and between Bacillus cereus and Bacillus thuringiensis: proposal for the recognition of two Bacillus thuringiensis genomovars, Frontiers in Microbiology, 10: 1978. https://doi.org/10.3389/fmicb.2019.01978 Chang J., Vaughan E., Liu C., Jelinski J., Terwilliger A., and Maresso A., 2020, Metabolic profiling reveals nutrient preferences during carbon utilization in Bacillus species, Scientific Reports, 11(1): 23917. https://doi.org/10.1038/s41598-021-03420-7 Chen D., Moar W., Jerga A., Gowda A., Milligan J., Bretsynder E., Rydel T., Baum J., Semeão A., Fu X., Guzov V., Gabbert K., Head G., and Haas J., 2021, Bacillus thuringiensis chimeric proteins Cry1A.2 and Cry1B.2 to control soybean lepidopteran pests: new domain combinations enhance insecticidal spectrum of activity and novel receptor contributions, PLoS ONE, 16(6): e0249150. https://doi.org/10.1371/journal.pone.0249150 Crickmore N., Berry C., Panneerselvam S., Mishra R., Connor T., and Bonning B., 2020, A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins, Journal of Invertebrate Pathology, 186: 107438. https://doi.org/10.1016/j.jip.2020.107438 Dame Z., Rahman M., and Islam T., 2021, Bacilli as sources of agrobiotechnology: recent advances and future directions, Green Chemistry Letters and Reviews, 14(2): 246-271. https://doi.org/10.1080/17518253.2021.1905080 Du Y.H., Zou J.R., Yin Z.Q., and Chen T., 2023, Pan-chromosome and comparative analysis of agrobacterium fabrum reveal important traits concerning the genetic diversity evolutionary dynamics and niche adaptation of the species, Microbiology Spectrum, 11(2): e02924-22. https://doi.org/10.1128/spectrum.02924-22 Fayad N., Koné K., Gillis A., and Mahillon J., 2021, Bacillus cytotoxicus genomics: chromosomal diversity and plasmidome versatility, Frontiers in Microbiology, 12: 789929. https://doi.org/10.3389/fmicb.2021.789929 Fiedoruk K., Drewnowska J.M., Mahillon J., Zambrzycka M., and Swiecicka I., 2021, Pan-genome portrait of Bacillus mycoides provides insights into the species ecology and evolution, Microbiology Spectrum, 9(1): 10-1128. https://doi.org/10.1128/Spectrum.00311-21 Fu X., Gong L., Liu Y., Lai Q., Li G., and Shao Z., 2021, Bacillus pumilus group comparative genomics: toward pangenome features diversity and marine environmental adaptation, Frontiers in Microbiology, 12: 571212. https://doi.org/10.3389/fmicb.2021.571212 Grubbs K., Bleich R., Maria K., Allen S., Farag S., Shank E., and Bowers A., 2017, Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology, mSystems, 2(6): 18. https://doi.org/10.1128/mSystems.00040-17 Gutiérrez M., Capalbo D., Arruda R., and Moraes R., 2019, Bacillus thuringiensis, Encyclopedia of Entomology, 1: 546. https://doi.org/10.1007/0-306-48380-7_390 Hằng P., Linh N., Ha N., Dong N., and Hien L., 2021, Genome sequence of a Vietnamese Bacillus thuringiensis strain TH19 reveals two potential insecticidal crystal proteins against Etiella zinckenella larvae, Biological Control, 152: 104473. https://doi.org/10.1016/j.biocontrol.2020.104473 Jouzani G., Valijanian E., and Sharafi R., 2017, Bacillus thuringiensis: a successful insecticide with new environmental features and tidings, Applied Microbiology and Biotechnology, 101: 2691-2711. https://doi.org/10.1007/s00253-017-8175-y Karłowski W., Varshney D., and Zielezinski A., 2023, Taxonomically restricted genes in Bacillus may form clusters of homologs and can be traced to a large reservoir of noncoding sequences, Genome Biology and Evolution, 15(3): evad023. https://doi.org/10.1093/gbe/evad023 Koch M., Ward J., Levine S., Baum J., Vicini J., and Hammond B., 2015, The food and environmental safety of Bt crops, Frontiers in Plant Science, 6: 283. https://doi.org/10.3389/fpls.2015.00283 Lazarte J., Valacco M., Moreno S., Salerno G., and Berón C., 2021, Molecular characterization of a Bacillus thuringiensis strain from Argentina toxic against Lepidoptera and Coleoptera based on its whole-genome and Cry protein analysis, Journal of Invertebrate Pathology, 183: 107563. https://doi.org/10.1016/j.jip.2021.107563 Li Y.J., Wang C., Ge L., Hu C., Wu G.G., Sun Y., Song L.L., Wu X., Pan A.H., Xu Q.Q., Shi J.L., Liang J.G., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Liu J., Li L., Peters B., Li B., Chen D., Xu Z., and Shirtliff M., 2017, Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426, Microbial Pathogenesis, 108: 55-60. https://doi.org/10.1016/j.micpath.2017.05.006 Liu P.P., Zhou Y., Wu Z.Q., Zhong H., Wei Y.J., Li Y., Liu S.K., Zhang Y., and Fang X.J., 2018, Computational identification and evolutionary analysis of toxins in Mosquitocidal Bacillus thuringiensis strain S2160-1, 3 Biotech, 8: 1-8. https://doi.org/10.1007/s13205-018-1313-0 Liu Y., Lai Q., Göker M., Meier-Kolthoff J., Wang M., Sun Y., Wang L., and Shao Z., 2015, Genomic insights into the taxonomic status of the Bacillus cereus group, Scientific Reports, 5: 14082. https://doi.org/10.1038/srep14082

RkJQdWJsaXNoZXIy MjQ4ODYzNA==