Bt_2024v15n3

Bt Research 2024, Vol.15, No.3, 154-163 http://microbescipublisher.com/index.php/bt 163 Nair K., Al-thani R., Ginibre C., Chandre F., Alsafran M., and Jaoua S., 2020, Bacillus thuringiensis strains isolated from Qatari soil, synthesizing δ-endotoxins highly active against the disease vector insect Aedes aegypti Bora Bora, Heliyon, 6(10): E05003. https://doi.org/10.1016/j.heliyon.2020.e05003 Pacheco S., Gómez I., Chiñas M., Sánchez J., Soberón M., and Bravo A., 2021, Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes, Frontiers in Microbiology, 12: 758314. https://doi.org/10.3389/fmicb.2021.758314 Pardo-López L., Soberón M., and Bravo A., 2013, Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection, FEMS Microbiology Reviews, 37(1): 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x Pérez C., Fernandez L., Sun J., Folch J., Gill S., Soberón M., and Bravo A., 2005, Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor, Proceedings of the National Academy of Sciences of the United States of America, 102(51): 18303-18308. https://doi.org/10.1073/PNAS.0505494102 Qasem J., AlAli E., Al-Mouqati S., and Al-Shayji Y., 2015, Genetic diversity study of locally isolated Bacillus thuringiensis strains from Kuwait using random amplified polymorphic DNA analysis, British Microbiology Research Journal, 7: 193-201. https://doi.org/10.9734/BMRJ/2015/17009 Rang J., He H., Wang T., Ding X.Z., Zuo M.X., Quan M.F., Sun Y.J., Yu Z.Q., Hu S.B., and Xia L.Q., 2015, Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718, PLoS ONE, 10(3): e0119065. https://doi.org/10.1371/journal.pone.0119065 Reyaz A., Balakrishnan N., and Udayasuriyan V., 2019, Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes, Microbial Pathogenesis, 134: 103553. https://doi.org/10.1016/j.micpath.2019.103553 Sun H., Xiang X., Li Q., Lin H., Wang X., Sun J., Luo L., and Zheng A., 2021, Comparative genome analysis of Bacillus thuringiensis strain HD521 and HS18-1, Scientific Reports, 11: 16590. https://doi.org/10.1038/s41598-021-96133-w Wang J., Steggles J., and Ellar D., 2008, Molecular characterization of virulence defects in Bacillus thuringiensis mutants, FEMS Microbiology Letters, 280(1): 127-134. https://doi.org/10.1111/j.1574-6968.2007.01061.x Wang P., Zhang C., Guo M., Guo S., Zhu Y., Zheng J., Zhu L., Ruan L., Peng D., and Sun M., 2014, Complete genome sequence of Bacillus thuringiensis YBT-1518, a typical strain with high toxicity to nematodes, Journal of Biotechnology, 171: 1-2. https://doi.org/10.1016/j.jbiotec.2013.11.023 Yuan Y., Gao M., Peng Q., Wu D., Liu P., and Wu Y., 2014, Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain, The Journal of General Virology, 95(Pt 3): 751-761. https://doi.org/10.1099/vir.0.058735-0 Zghal R., Ghedira K., Elleuch J., Kharrat M., and Tounsi S., 2018, Genome sequence analysis of a novel Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide, International Journal of Biological Macromolecules, 116: 1153-1162. https://doi.org/10.1016/j.ijbiomac.2018.05.119 Zhou Y., Zhang W.F., Wan Y.S. Jin W.J., Zhang Y., Li Y.Z., Chen B.S., JIang M.G., Fang X.J., 2024, Mosquitocidal toxin-like islands in Bacillus thuringiensis S2160-1 revealed by complete-genome sequence and MS proteomic analysis, Scientific Reports, 14: 15216. https://doi.org/10.1038/s41598-024-66048-3 Zhu L., Tian L., Zheng J., Gao Q., Wang Y., Peng D., Ruan L., and Sun M., 2015, Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide, Journal of Biotechnology, 195: 108-109. https://doi.org/10.1016/j.jbiotec.2014.12.021

RkJQdWJsaXNoZXIy MjQ4ODYzNA==