Bt_2024v15n3

Bt Research 2024, Vol.15, No.3, 154-163 http://microbescipublisher.com/index.php/bt 162 Cheng F., Wang J., Song Z., Cheng J., Zhang D., and Liu Y., 2015, Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes, Journal of Biotechnology, 210: 17-18. https://doi.org/10.1016/j.jbiotec.2015.06.395 Cherif A., Ettoumi B., Raddadi N., Daffonchio D., and Boudabous A., 2007, Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting, Canadian Journal of Microbiology, 53(3): 343-350. https://doi.org/10.1139/W06-129 Crickmore N., Berry C., Panneerselvam S., Mishra R., Connor T., and Bonning B., 2020, A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins, Journal of Invertebrate Pathology, 186: 107438. https://doi.org/10.1016/j.jip.2020.107438 Desvaux M., Dalmasso G., Beyrouthy R., Barnich N., Delmas J., and Bonnet R., 2020, Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli, Frontiers in Microbiology, 11: 2065. https://doi.org/10.3389/fmicb.2020.02065 Dobrindt U., Hochhut B., Hentschel U., and Hacker J., 2004, Genomic islands in pathogenic and environmental microorganisms, Nature Reviews Microbiology, 2: 414-424. https://doi.org/10.1038/nrmicro884 Dorsch J., Candas M., Griko N., Maaty W., Midboe E., Vadlamudi R., and Bulla L., 2002, Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochemistry and Molecular Biology, 32(9): 1025-1036. https://doi.org/10.1016/S0965-1748(02)00040-1 Fayad N., Kambris Z., Chamy L., Mahillon J., and Awad M., 2020, A novel antidipteran Bacillus thuringiensis strain: unusual cry toxin genes in a highly dynamic plasmid environment, Applied and Environmental Microbiology, 87: e02294-20. https://doi.org/10.1128/AEM.02294-20 Fernández-Luna M., Lanz-Mendoza H., Gill S., Bravo A., Soberón M., and Miranda-Ríos J., 2010, An α-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae), Environmental Microbiology, 12(3): 746-757. https://doi.org/10.1111/j.1462-2920.2009.02117.x Gal-Mor O., and Finlay B., 2006, Pathogenicity islands: a molecular toolbox for bacterial virulence, Cellular Microbiology, 8(11): 1687-1839. https://doi.org/10.1111/j.1462-5822.2006.00794.x Gonçalves K., Appel R., Bôas L., Cardoso P., and Bôas G., 2021, Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato, Current Genetics, 68: 449-466. https://doi.org/10.1007/s00294-022-01240-4 Gutiérrez M., Capalbo D., Arruda R., and Moraes R., 2019, Bacillus thuringiensis, Natural Enemies of Insect Pests in Neotropical Agroecosystems, 390: 225-226. https://doi.org/10.1007/0-306-48380-7_390 Hollensteiner J., 2017, Evolutionary genomics of Bacillus thuringiensis, Fakultät für Biologie und Psychologie, 6567: 1-30. https://doi.org/10.53846/goediss-6567 Lailak C., Khaokhiew T., Promptmas C., Promdonkoy B., Pootanakit K., and Angsuthanasombat C., 2013, Bacillus thuringiensis Cry4Ba toxin employs two receptor-binding loops for synergistic interactions with Cyt2Aa2, Biochemical and Biophysical Research Communications, 435(2): 216-221. https://doi.org/10.1016/j.bbrc.2013.04.078 Lechuga A., Lood C., Salas M., Noort V., Lavigne R., and Redrejo-Rodríguez M., 2020a, Completed genomic sequence of Bacillus thuringiensis HER1410 reveals a cry-containing chromosome, two megaplasmids, and an integrative plasmidial prophage, G3: Genes Genomes Genetics, 10: 2927-2939. https://doi.org/10.1534/g3.120.401361 Lechuga A., Lood C., Salas M., Noort V., Lavigne R., and Redrejo-Rodríguez M., 2020b, The fully resolved genome of Bacillus thuringiensis HER1410 reveals a cry-containing chromosome, two megaplasmids & an integrative plasmidial prophage, bioRxiv, 8: 1-47. https://doi.org/10.1101/2020.05.05.080028 Li Y., Shu C., Shan Y., Lili G., Song F., and Zhang J., 2017, Complete genome sequence of Bacillus thuringiensis Bt185, a potential soil insect biocontrol agent, Journal of Integrative Agriculture, 16: 749-751. https://doi.org/10.1016/S2095-3119(16)61422-3 Liu J., Li L., Peters B., Li B., Chen D., Xu Z., and Shirtliff M., 2017, Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426, Microbial Pathogenesis, 108: 55-60. https://doi.org/10.1016/j.micpath.2017.05.006 Méric G., Mageiros L., Pascoe B., Woodcock D., Mourkas E., Lamble S., Bowden R., Jolley K., Raymond B., and Sheppard S., 2018, Lineage‐specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group, Molecular Ecology, 27: 1524-1540. https://doi.org/10.1111/mec.14546 Murawska E., Fiedoruk K., and Święcicka I., 2014, Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056, Polish Journal of Microbiology, 63(2): 147-156. https://doi.org/10.33073/PJM-2014-020

RkJQdWJsaXNoZXIy MjQ4ODYzNA==