Bt Research 2024, Vol.15, No.3, 141-153 http://microbescipublisher.com/index.php/bt 152 Kumar P., Kamle M., Borah R., Mahato D., and Sharma B., 2021, Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture, Egyptian Journal of Biological Pest Control, 31: 1-7. https://doi.org/10.1186/s41938-021-00440-3 Lechuga A., Lood C., Salas M., van Noort V., Lavigne R., and Redrejo-Rodríguez M., 2020, Completed genomic sequence of Bacillus thuringiensis HER1410 reveals a cry-containing chromosome two megaplasmids and an integrative plasmidial prophage, G3: Genes|Genomes|Genetics, 10: 2927-2939. https://doi.org/10.1534/g3.120.401361 Liu J., Li L., Peters B., Li B., Chen D., Xu Z., and Shirtliff M., 2017, Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426, Microbial Pathogenesis, 108: 55-60. https://doi.org/10.1016/j.micpath.2017.05.006 Makart L., Commans F., Gillis A., and Mahillon J., 2017, Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis, Plasmid, 91: 76-81. https://doi.org/10.1016/j.plasmid.2017.04.001 Patel A., Pathak L., Parvez N., Panpatte D., Khatri K., and Jani J., 2015, Molecular approaches for the improvement of Bacillus thuringiensis against pests, In Advances in Plant Biopesticides, 2015: 179-185. https://doi.org/10.1007/978-81-322-2089-3_17 Peralta C., Sauka D., Pérez M.P., Onco M.I., Fiodor A., Caballero J., Berry C., Valle E.D., and Palma L., 2021, Genome sequence analysis and insecticidal characterization of Bacillus thuringiensis Bt-UNVM_94 a strain showing dual insecticidal activity against lepidopteran and coleopteran pests, Proceedings of 1st International Electronic Conference on Toxins, 65: 1-6. https://doi.org/10.3390/iect2021-09139 Qasem J., AlAli E., Al-Mouqati S.A., and Al-Shayji Y., 2015, Genetic diversity study of locally isolated Bacillus thuringiensis strains from Kuwait using random amplified polymorphic DNA analysis, British Microbiology Research Journal, 7(4): 193-201. https://doi.org/10.9734/BMRJ/2015/17009 Quan M., Xie J., Liu X., Li Y., Rang J., Zhang T., Zhou F., Xia L., Hu S., Sun Y., and Ding X., 2016, Comparative analysis of genomics and proteomics in the new isolated Bacillus thuringiensis X022 revealed the metabolic regulation mechanism of carbon flux following Cu2+ treatment, Frontiers in Microbiology, 7: 792. https://doi.org/10.3389/fmicb.2016.00792 Rabha M., Acharjee S., and Sarmah B.K., 2018, Multilocus sequence typing for phylogenetic viewand vip gene diversity of Bacillus thuringiensis strains of the assam soil of North East India, World Journal of Microbiology and Biotechnology, 34: 1-9. https://doi.org/10.1007/s11274-018-2489-5 Rahman M., Lim S., and Park Y., 2022, Molecular identification of Bacillus isolated from Korean water deer (Hydropotes inermis argyropus) and striped field mouse (Apodemus agrarius) feces by using an SNP-based 16S ribosomal marker, Animals: An Open Access Journal from MDPI, 12(8): 979. https://doi.org/10.3390/ani12080979 Reyaz A., Balakrishnan N., and Udayasuriyan V., 2019, Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes, Microbial Pathogenesis, 134: 103553 https://doi.org/10.1016/j.micpath.2019.103553 Santos E.N., Menezes L.P., Dolabella S.S., Santini A., Severino P., Capasso R., Zielińska A., Souto E., and Jain S., 2021, Bacillus thuringiensis: From biopesticides to anticancer agents, Biochimie, 192: 83-90. https://doi.org/10.1016/j.biochi.2021.10.003 Sauka D.h., Peralta C., Pérez M.p., Molla A., Fernandez-Göbel T., Ocampo F., and Palma L., 2023, Bacillus thuringiensis Bt_UNVM-84 a novel strain showing insecticidal activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae), Toxins, 16(1): 4. https://doi.org/10.3390/toxins16010004 Shikov A., Malovichko Y., Lobov A., Belousova M.E., Nizhnikov A., and Antonets K., 2021, The distribution of several genomic virulence determinants does not corroborate the established serotyping classification of Bacillus thuringiensis, International Journal of Molecular Sciences, 22 2244. https://doi.org/10.3390/ijms22052244 Subbanna A., Chandrashekara C., Stanley J., Mishra K.K., Mishra P., and Pattanayak A., 2019, Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to northwestern Indian Himalayas and their synergistic toxicity with selected insecticides, Pesticide Biochemistry and Physiology, 158: 166-174. https://doi.org/10.1016/J.PESTBP.2019.05.005 Wang A., and Ash G., 2015, Whole genome phylogeny of Bacillus by feature frequency profiles (FFP), Scientific Reports, 5: 13644. https://doi.org/10.1038/srep13644 Wang K., Shu C., Bravo A., Soberón M., Zhang H., Crickmore N., and Zhang J., 2023, Development of an online genome sequence comparison resource for Bacillus cereus sensu lato strains using the efficient composition vector method, Toxins, 15(6): 393. https://doi.org/10.3390/toxins15060393 Wang K., Shu C., Soberón M., Bravo A., and Zhang J., 2018, Systematic characterization of Bacillus genetic stock center Bacillus thuringiensis strains using multi-locus sequence typing, Journal of Invertebrate Pathology, 155: 5-13. https://doi.org/10.1016/j.jip.2018.04.009 Wang P., Zhu Y., Zhang Y., Zhang C., Xu J., Deng Y., Peng D., Ruan L., and Sun M., 2016, Mob/oriT a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus, Microbial Cell Factories, 15: 1-15. https://doi.org/10.1186/s12934-016-0492-9
RkJQdWJsaXNoZXIy MjQ4ODYzNA==