Bt_2024v15n3

Bt Research 2024, Vol.15, No.3, 118-130 http://microbescipublisher.com/index.php/bt 129 Quan M., Xie J., Liu X., Li Y., Rang J., Zhang T., Zhou F., Xia L., Hu S., Sun Y., and Ding X., 2016, Comparative analysis of genomics and proteomics in the new isolated Bacillus thuringiensis X022 revealed the metabolic regulation mechanism of carbon flux following Cu2+ treatment, Frontiers in Microbiology, 7: 792. https://doi.org/10.3389/fmicb.2016.00792 PMid:27303381 PMCid:PMC4882340 Rangeshwaran R., Gorky A., Velavan V., Ashwitha K., Sivakumar G., and Mohan M., 2014, Cry gene and plasmid profiling of Bacillus thuringiensis isolated from indian soils, Journal of Biological Control, 28: 185-191. Rashki M., Maleki M., Torkzadeh-Mahani M., Shakeri S., and Nezhad P. (2021). Isolation of Iranian Bacillus thuringiensis strains and characterization of lepidopteran-active cry genes, Egyptian Journal of Biological Pest Control, 31: 1-10. https://doi.org/10.1186/s41938-021-00432-3 Robertson J., and Nash J., 2018, MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies, Microbial Genomics, 4(8): 000206. https://doi.org/10.1099/mgen.0.000206 Rodríguez-Navarro J., Miró E., Brown-Jaque M., Hurtado J., Moreno A., Muniesa M., González-López J., Vila J., Espinal P., and Navarro F., 2020, Diversity of plasmids in Escherichia coli and Klebsiella pneumoniae: a comparison of commensal and clinical isolates, Antimicrobial Agents and Chemotherapy, 64(5): 10.1128. https://doi.org/10.1128/AAC.02064-19 PMid:32122890 PMCid:PMC7179601 Şahin B., Gomis-Cebolla J., Güneş H., and Ferré J., 2018, Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins, PLoS ONE, 13(11): e0206813. https://doi.org/10.1371/journal.pone.0206813 PMid:30383811 PMCid:PMC6211755 Schwengers O., Barth P., Falgenhauer L., Hain T., Chakraborty T., and Goesmann A., 2020, Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores, Microbial Genomics, 6(10): 000398. https://doi.org/10.1099/mgen.0.000398 PMid:32579097 PMCid:PMC7660248 Shishir A., Akter A., Hassan H., Kibria G., Ilias M., Khan S., and Hoq M., 2012, Characterization of locally isolated Bacillus thuringiensis for the Development of Eco-friendly Biopesticides in Bangladesh, journal of biopesticides, 5: 216-222. Singh D., S., Thayil S., Sohal S., and Kesavan A., 2021, Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1, International Journal of Biological Macromolecules, 174: 362-369. https://doi.org/10.1016/j.ijbiomac.2021.01.143 PMid:33493564 Smalla K., Jechalke S., and Top E., 2015, Plasmid detection, characterization, and ecology, Microbiology spectrum, 3(1): PLAS-0038-2014. https://doi.org/10.1128/microbiolspec.PLAS-0038-2014 PMid:26104560 PMCid:PMC4480600 Soares-da-Silva J., Queirós S., Aguiar J., Viana J., Neta M., Silva M., Pinheiro V., Polanczyk R., Carvalho-Zilse G., and Tadei W., 2017, Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance, Acta tropica, 176: 197-205. https://doi.org/10.1016/j.actatropica.2017.08.006 PMid:28823909 Swamy H., Asokan R., Nagesha S., Arora D., Birah A., and Mahmood R., 2011, Cloning, characterization and diversity of insecticidal crystal protein genes of Bacillus thuringiensis native isolates from soils of Andaman and Nicobar Islands, Current Microbiology, 63: 420-425. https://doi.org/10.1007/s00284-011-9998-x PMid:21858696 Tamminen M., Virta M., Fani R., and Fondi M., 2012, Large-scale analysis of plasmid relationships through gene-sharing networks.. Molecular biology and evolution, 29(4): 1225-1240. https://doi.org/10.1093/molbev/msr292 PMid:22130968 Valicente F., and Silva R., 2017, Characterization of Bacillus thuringiensis using plasmid patterns, Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and Use in the Field of Biocontrol, pp.79-87. https://doi.org/10.1007/978-3-319-56678-8_6 Wang Z., Wang K., Bravo A., Soberón M., Cai J., Shu C., and Zhang J., 2020, Coexistence of cry9 with the vip3A gene in an identical plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity, Journal of Agricultural and Food Chemistry, 68(47): 14081-14090. https://doi.org/10.1021/acs.jafc.0c05304 PMid:33180493

RkJQdWJsaXNoZXIy MjQ4ODYzNA==