Bt_2024v15n2

Bt Research 2024, Vol.15, No.2, 96-109 http://microbescipublisher.com/index.php/bt 108 José M., Vertuan H., Soares D., Sordi D., Bellini L., Kotsubo R., and Berger G., 2020, Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton, PLoS ONE, 15(4): e0231733. https://doi.org/10.1371/journal.pone.0231733 Koul B., 2020, Genetically modified (GM) crops harbouring Bacillus thuringiensis (BT) gene(s) to combat biotic stress caused by insect pests, Environmental and Microbial Biotechnology, 2: 21-61. https://doi.org/10.1007/978-981-15-2576-6_2 MacRae T., Baur M., Boethel D., Fitzpatrick B., Gao A., Gamundi J., Harrison L., Kabuye V., Mcpherson R., Miklos J., Paradise M., Toedebusch A., and Viegas A., 2005, Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera, Journal of Economic Entomology, 98(2): 577-587. https://doi.org/10.1093/JEE/98.2.577 Manyangarirwa W., Turnbull M., and McCutcheon G., 2006, Gene pyramiding as a Bt resistance management strategy: how sustainable is this strategy? African Journal of Biotechnology, 5: 781-785. https://doi.org/10.5897/AJB05.439 Ma X.N., Zhang X.Y., Liu H.M., and Li Z.H., 2020, Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9, Nature Plants, 6: 773-779. https://doi.org/10.1038/s41477-020-0704-5 Marroquin L., Elyassnia D., Griffitts J., Feitelson J., and Aroian R., 2000, Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans, Genetics, 155(4): 1693-1699. Nihongaki Y., Otabe T., and Sato M., 2018, Emerging approaches for spatiotemporal control of targeted genome with inducible CRISPR-Cas9, Analytical Chemistry, 90(1): 429-439. https://doi.org/10.1021/acs.analchem.7b04757 Pardo-López L., Soberón M., and Bravo A., 2013, Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, Insect resistance and consequences for crop protection, FEMS Microbiology Reviews, 37(1): 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x Petolino J., and Kumar S., 2016, Transgenic trait deployment using designed nucleases, Plant Biotechnology Journal, 14(2): 503-509. https://doi.org/10.1111/pbi.12457 Qin G., Wu S., Zhang L., Li Y., Liu C., Yu J., Deng L., Xiao G., and Zhang Z., 2022, An efficient modular gateway recombinase-based gene stacking system for generating multi-trait transgenic plants, Plants, 11(4): 488. https://doi.org/10.3390/plants11040488 Rao M., and Wang L., 2021, CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture, Planta, 254: 8. https://doi.org/10.1007/s00425-021-03716-y Romeis J., Naranjo S., Meissle M., and Shelton A., 2019, Genetically engineered crops help support conservation biological control, Biological Control, 130: 136-154. https://doi.org/10.1016/J.BIOCONTROL.2018.10.001 REX Consortium, 2016, Combining selective pressures to enhance the durability of disease resistance genes, Frontiers in Plant Science, 7: 1916. https://doi.org/10.3389/fpls.2016.01916 Salim M., Gökçe A., Naqqash M., and Bakhsh A., 2020, Gene pyramiding: an emerging control strategy against insect pests of agronomic crops, Agronomic Crops, 16: 285-312. https://doi.org/10.1007/978-981-15-0025-1_16 Schaart J., Wiel C., Lotz L., and Smulders M., 2016, Opportunities for products of new plant breeding techniques, Trends in Plant Science, 21(5): 438-449. https://doi.org/10.1016/j.tplants.2015.11.006 Shailani A., Joshi R., Singla-Pareek S., and Pareek A., 2020, Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice, Physiologia Plantarum, 172(2): 1352-1362. https://doi.org/10.1111/ppl.13270 Shehryar K., Khan R., Iqbal A., Hussain S., Imdad S., Bibi A., Hamayun L., and Nakamura I., 2019, Transgene stacking as effective tool for enhanced disease resistance in plants, Molecular Biotechnology, 62: 1-7. https://doi.org/10.1007/s12033-019-00213-2 Srivastava V., 2018, Gene stacking in plants through the application of site-specific recombination and nuclease activity, Methods in Molecular Biology, 1864: 267-277. https://doi.org/10.1007/978-1-4939-8778-8_18 Srivastava V., and Thomson J., 2016, Gene stacking by recombinases, Plant Biotechnology Journal, 14(2): 471-482. https://doi.org/10.1111/pbi.12459 Sun Y., Zhang X., Wu C., He Y., Ma Y., Hou H., Guo X., Du W., Zhao Y., and Xia L., 2016, Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase, Molecular plant, 9(4): 628-631. https://doi.org/10.1016/j.molp.2016.01.001

RkJQdWJsaXNoZXIy MjQ4ODYzNA==