Bt Research 2024, Vol.15, No.2, 87-95 http://microbescipublisher.com/index.php/bt 94 Duan J., Lundgren J., Naranjo S., and Marvier M., 2009, Extrapolating non-target risk of Bt crops from laboratory to field, Biology Letters, 6: 74-77. https://doi.org/10.1098/rsbl.2009.0612 Federici B., 2003, Effects of Bt on non-target organisms, Journal of New Seeds, 5: 11-30. https://doi.org/10.1300/J153v05n01_02 Kostov K., Damgaard C., Hendriksen N., Sweet J., and Krogh P., 2014, Are population abundances and biomasses of soil invertebrates changed by Bt crops compared with conventional crops? A systematic review protocol, Environmental Evidence, 3: 1-9. https://doi.org/10.1186/2047-2382-3-10 Kota M., Daniell H., Varma S., Garczynski S., Gould F., and Moar W., 1999, Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects, Proceedings of the National Academy of Sciences of the United States of America, 96(5): 1840-1845. https://doi.org/10.1073/pnas.96.5.1840 Krogh M., McCreedy C., Regetz J., and Kareiva P., 2007, A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates, Science, 316: 1475-1477. https://doi.org/10.1126/science.1139208 Krogh P., Kostov K., and Damgaard C., 2020, The effect of Bt crops on soil invertebrates: a systematic review and quantitative meta-analysis, Transgenic Research, 29: 487-498. https://doi.org/10.1007/s11248-020-00213-y Lagadic L., Roucaute M., and Caquet T., 2014, Bti sprays do not adversely affect non‐target aquatic invertebrates in French Atlantic coastal wetlands, Journal of Applied Ecology, 51: 102-113. https://doi.org/10.1111/1365-2664.12165 Lagadic L., Schäfer R., Roucaute M., Szöcs E., Chouin S., Maupeou J., Duchet C., Franquet E., Hunsec B., Bertrand C., Fayolle S., Frances B., Rozier Y., Foussadier R., Santoni J., and Lagneau C., 2016, No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands, The Science of the Total Environment, 553: 486-494. https://doi.org/10.1016/j.scitotenv.2016.02.096 Lang A., and Otto M., 2010, A synthesis of laboratory and field studies on the effects of transgenic Bacillus thuringiensis (Bt) maize on non‐target Lepidoptera, Entomologia Experimentalis et Applicata, 135(2): 121-134. https://doi.org/10.1111/j.1570-7458.2010.00981.x Li Y., Wang C., Ge L., Hu C., Wu G., Sun Y., Song L., Wu X., Pan A., Xu Q., Shi J., Liang J., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212 https://doi.org/10.3390/plants11091212 Liang Y., Liu F., Li J., Cheng Z., Chen H., Wang X., Xiao N., and Liu Y., 2018, Coexistence of Bacillus thuringiensis (Bt)-transgenic and conventional rice affects insect abundance and plant fitness in fields, Pest Management Science, 74(7): 1646-1653. https://doi.org/10.1002/ps.4856 Liu T., Chen X., Qi L., Chen F., Liu M., and Whalen J., 2018, Root and detritus of transgenic Bt crop did not change nematode abundance and community composition but enhanced trophic connections, The Science of the Total Environment, 644: 822-829. https://doi.org/10.1016/j.scitotenv.2018.07.025 Marroquin L., Elyassnia D., Griffitts J., Feitelson J., and Aroian R., 2000, Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans, Genetics, 155(4): 1693-1699. https://doi.org/10.1093/genetics/155.4.1693 Marvier M., McCreedy C., Regetz J., and Kareiva P., 2007, A Meta-analysis of effects of Bt cotton and maize on nontarget invertebrates, Science, 316: 1475-1477. https://doi.org/10.1126/science.1139208 Naranjo S., 2009, Impacts of Bt crops on non-target invertebrates and insecticide use patterns, Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4: 1-11. https://doi.org/10.1079/PAVSNNR20094011 Naranjo S., 2014, Effects of GM crops on non-target organisms, Plant Biotechnology, 11: 129-142. https://doi.org/10.1007/978-3-319-06892-3_11 Navasero M., Candano R., Hautea D., Hautea R., Shotkoski F., and Shelton A., 2016, Assessing potential impact of Bt eggplants on non-target arthropods in the philippines, PLoS ONE, 11(10): e0165190. https://doi.org/10.1371/journal.pone.0165190 Romeis J., Naranjo S., Meissle M., and Shelton A., 2019, Genetically engineered crops help support conservation biological control, Biological Control, 130: 136-154. https://doi.org/10.1016/j.biocontrol.2018.10.001 Russell T., Kay B., and Skilleter G., 2009, Environmental effects of mosquito insecticides on saltmarsh invertebrate fauna, Aquatic Biology, 6: 77-90. https://doi.org/10.3354/ab00156 Schrijver A., Clercq P., Maagd R., and Frankenhuyzen K., 2015, Relevance of Bt toxin interaction studies for environmental risk assessment of genetically modified crops, Plant Biotechnology Journal, 13(9): 1221-1223. https://doi.org/10.1111/pbi.12406
RkJQdWJsaXNoZXIy MjQ4ODYzNA==