Bt_2024v15n2

Bt Research 2024, Vol.15, No.2, 76-86 http://microbescipublisher.com/index.php/bt 86 Naimov S., Dukiandjiev S., and Maagd R., 2002, A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato, Plant biotechnology journal, 1(1): 51-57. https://doi.org/10.1046/J.1467-7652.2003.00005.X Pardo-López L., Soberón M., and Bravo A., 2013, Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection, FEMS Microbiology Reviews, 37(1): 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x Peralta C., Sauka D., Pérez M., Onco M., Fiodor A., Caballero J., Caballero P., Berry C., Valle E., and Palma L., 2021, Genome sequence analysis and insecticidal characterization of Bacillus thuringiensis Bt-UNVM_94, a strain showing dual insecticidal activity against lepidopteran and coleopteran pests, Proceedings of 1st International Electronic Conference on Toxins, 65: 1-6. https://doi.org/10.3390/iect2021-09139 Pérez C., Fernandez L., Sun J., Folch J., Gill S., Soberón M., and Bravo A., 2005, Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor, Proceedings of the National Academy of Sciences of the United States of America, 102(51): 18303-18308. https://doi.org/10.1073/PNAS.0505494102 Reyaz A., Balakrishnan N., and Udayasuriyan V., 2019, Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes, Microbial Pathogenesis, 134: 103553. https://doi.org/10.1016/j.micpath.2019.103553 Sheppard A., Nakad R., Saebelfeld M., Masche A., Dierking K., and Schulenburg H., 2016, High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis, Journal of Invertebrate Pathology, 133: 34-40. https://doi.org/10.1016/j.jip.2015.11.009 Stein C., Jones G., Chalmers T., and Berry C., 2006, Transcriptional analysis of the toxin-coding plasmid pBtoxis fromBacillus thuringiensis subsp. Israelensis, Applied and Environmental Microbiology, 72: 1771-1776. https://doi.org/10.1128/AEM.72.3.1771-1776.2006 Tanapongpipat S., Luxananil P., Promdonkoy B., Chewawiwat N., Audtho M., and Panyim S., 2003, A plasmid encoding a combination of mosquito-larvicidal genes fromBacillus thuringiensis subsp. israelensis and Bacillus sphaericus confers toxicity against a broad range of mosquito larvae when expressed in Gram-negative bacteria, FEMS Microbiology Letters, 228(2): 259-263. https://doi.org/10.1016/S0378-1097(03)00780-8 Tetreau G., 2021, How does Bacillus thuringiensis crystallize such a large diversity of toxins? Toxins, 13(7): 443. https://doi.org/10.3390/toxins13070443 Thammasittirong A., Thammasittirong S., Imtong C., Charoenjotivadhanakul S., Sakdee S., Li H., Okonogi S., and Angsuthanasombat C., 2021, Bacillus thuringiensis Cry4Ba insecticidal toxinexploits Leu615 in its c-terminal domain to interact with a target receptor—Aedes aegypti membrane-bound alkaline Phosphatase, Toxins, 13(8): 553. https://doi.org/10.3390/toxins13080553 Wang Z.Y., Wang K., Bravo A., Soberón M., Cai J.L., Shu C.L., and Zhang J., 2020, Coexistence of cry9 with the vip3A gene in an identical plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity, Journal of Agricultural and Food Chemistry, 68(47): 14081-14090. https://doi.org/10.1021/acs.jafc.0c05304 Zghal R., Ghedira K., Elleuch J., Kharrat M., and Tounsi S., 2018, Genome sequence analysis of a novel Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide, International Journal of Biological Macromolecules, 116: 1153-1162. https://doi.org/10.1016/j.ijbiomac.2018.05.119 Zhang W.F., Yu S.L., Peng S.L., Gong J.R., Qian J.Z., He J.Q., Dai W.Y., and Wang R.P., 2017, Characterization of a novel mosquitocidal toxin of Cry50Ba and its potential synergism with other mosquitocidal toxins, Toxicon, 138: 165-168. Zheng J.S., Gao Q.L., Liu L.H., Liu H.L., Wang Y.Y., Peng D.H., Ruan L.F., Raymond B., and Sun M., 2017, Comparative genomics of Bacillus thuringiensis reveals a path to specialized exploitation of multiple invertebrate hosts, mBio, 8(4): 17. https://doi.org/10.1128/mBio.00822-17

RkJQdWJsaXNoZXIy MjQ4ODYzNA==