Bt_2024v15n2

Bt Research 2024, Vol.15, No.2, 76-86 http://microbescipublisher.com/index.php/bt 85 Dorsch J., Candas M., Griko N., Maaty W., Midboe E., Vadlamudi R., and Bulla L., 2002, Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochemistry and Molecular Biology, 32(9): 1025-1036. https://doi.org/10.1016/S0965-1748(02)00040-1 Fayad N., Kambris Z., Chamy L., Mahillon J., and Awad M., 2020, A novel antidipteran Bacillus thuringiensis strain: unusual cry toxin genes in a highly dynamic plasmid environment, Applied and Environmental Microbiology, 87(5): e02294-20. https://doi.org/10.1128/AEM.02294-20 Fico S., and Mahillon J., 2006, TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system, BMC Genomics, 7: 259. https://doi.org/10.1186/1471-2164-7-259 Geng P.L., Zhao P.Y., Wan X.F., Mahillon J., Hu Y.F., Gong Y.F., and Hu X.M.,2023, Interspecies horizontal transfer and specific integration of the mosquitocidal toxin-encoding plasmid pTAND672-2 from Bacillus thuringiensis subsp. israelensis to Lysinibacillus sphaericus, Applied and Environmental Microbiology, 89(2): e01652-22. https://doi.org/10.1128/aem.01652-22 Guo S.Y., Ye S., Liu Y.F., Wei L., Xue J., Wu H.F., Song F.P., Zhang J., Wu X.A., Huang D.F., and Rao Z.H., 2009, Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela, Journal of Structural Biology, 168(2): 259-266. https://doi.org/10.1016/j.jsb.2009.07.004 Guo Z.J., Sun D., Kang S., Zhou J.L., Gong L.J., Qin J.Y., Guo L., Zhu L.H., Bai Y., Luo L., and Zhang Y.J., 2019, CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), Insect Biochemistry and Molecular Biology, 107: 31-38. https://doi.org/10.1016/j.ibmb.2019.01.009 Heckel D., 2012, Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action, Pesticide Biochemistry and Physiology, 104: 103-110. https://doi.org/10.1016/J.PESTBP.2012.05.007 Herrero S., González-Cabrera J., Ferré J., Bakker P., and Maagd R., 2004, Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae, The Biochemical Journal, 384(3): 507-513. https://doi.org/10.1042/BJ20041094 Lazarte J., Valacco M., Moreno S., Salerno G., and Berón C., 2021, Molecular characterization of a Bacillus thuringiensis strain from Argentina, toxic against Lepidoptera and Coleoptera, based on its whole-genome and Cry protein analysis, Journal of Invertebrate Pathology, 183: 107563. https://doi.org/10.1016/j.jip.2021.107563 Lereclus D., Lereclus D., Agaisse H., Grandvalet C., Salamitou S., and Gominet M., 2000, Regulation of toxin and virulence gene transcription in Bacillus thuringiensis, International Journal of Medical Microbiology : IJMM, 290(4-5): 295-299. https://doi.org/10.1016/S1438-4221(00)80024-7 Liang Z., Ali Q., Wang Y.J., Mu G.Y., Kan X.F., Ren Y.J., Manghwar H., Gu Q., Wu H.J., and Gao X.W., 2022, Toxicity of Bacillus thuringiensis strains derived from the novel crystal protein Cry31Aa with high nematicidal activity against rice parasitic nematode Aphelenchoides besseyi, International Journal of Molecular Sciences, 23(15): 8189. https://doi.org/10.3390/ijms23158189 Liu X., Zhu S., Ye W., Ruan L., Yu Z., Zhao C., and Sun M., 2008, Genetic characterization of two putative toxin-antitoxin systems on cryptic plasmids from Bacillus thuringiensis strain YBT-1520, Journal of Microbiology and Biotechnology, 18(10): 1630-1633. Malovichko Y., Nizhnikov A., and Antonets K., 2019, Repertoire of the Bacillus thuringiensis virulence factors unrelated to major classes of protein toxins and its role in specificity of host-pathogen interactions, Toxins, 11(6): 347. https://doi.org/10.3390/toxins11060347 Masri L., Branca A., Sheppard A., Papkou A., Lähnemann D., Günther P., Prahl S., Saebelfeld M., Hollensteiner J., Liesegang H., Brzuszkiewicz E., Daniel R., Michiels N., Schulte R., Kurtz J., Rosenstiel P., Telschow A., Bornberg-Bauer E., and Schulenburg H., 2015, Host–pathogen coevolution: the selective advantage of Bacillus thuringiensis virulence and its cry toxin genes, PLoS Biology, 13(6): e1002169. https://doi.org/10.1371/journal.pbio.1002169 Masson L., Schwab G., Mazza A., Brousseau R., Potvin L., and Schwartz J., 2004, A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootwormDiabrotica virgifera virgifera LeConte forms ion channels in lipid membranes, Biochemistry, 43(38): 12349-12357. https://doi.org/10.1021/BI048946Z Méric G., Mageiros L., Pascoe B., Woodcock D., Mourkas E., Lamble S., Bowden R., Jolley K., Raymond B., and Sheppard S., 2018, Lineage‐specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group, Molecular Ecology, 27: 1524-1540. https://doi.org/10.1111/mec.14546. Murawska E., Fiedoruk K., and Święcicka I., 2014, Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056, Polish Journal of Microbiology, 63(2): 147-156. https://doi.org/10.33073/PJM-2014-020

RkJQdWJsaXNoZXIy MjQ4ODYzNA==