Bt_2024v15n2

Bt Research 2024, Vol.15, No.1, 65-75 http://microbescipublisher.com/index.php/bt 75 Qiao F., and Huang J., 2018, Sustainability of the economic benefit of Bt cotton in China: results from household surveys, The Journal of Development Studies, 56: 2045-2060. https://doi.org/10.1360/N052018-00109 Raybould A., and Quemada H., 2010, Bt crops and food security in developing countries: realised benefits sustainable use and lowering barriers to adoption, Food Security, 2: 247-259. https://doi.org/10.1007/s12571-010-0066-3 Raymond B., Sayyed A., Hails R., and Wright D., 2007, Exploiting pathogens and their impact on fitness costs to manage the evolution of resistance to Bacillus thuringiensis, Journal of Applied Ecology, 44: 768-780. https://doi.org/10.1111/J.1365-2664.2007.01285.X Rodríguez P., Cerda A., Font X., Sanchez A., and Artola A., 2019, Valorisation of biowaste digestate through solid state fermentation to produce biopesticides fromBacillus thuringiensis, Waste management, 93 63-71. https://doi.org/10.1016/J.WASMAN.2019.05.026 Rosas-García N., 2009, Biopesticide production fromBacillus thuringiensis: an environmentally friendly alternative, Recent patents on biotechnology, 3(1): 28-36. https://doi.org/10.2174/187220809787172632 Sanchis V., and Bourguet D., 2011, Bacillus thuringiensis: applications in agriculture and insect resistance management, a review, Agronomy for Sustainable Development, 28: 11-20. https://doi.org/10.1051/agro:2007054 Seenivasagan R., and Babalola O., 2021, Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product, Biology, 10(11): 1111. https://doi.org/10.3390/biology10111111 Shanmugam S., Ngo H., and Wu Y., 2020, Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review, Renewable Energy, 149: 1107-1119. https://doi.org/10.1016/j.renene.2019.10.107 Srinivasan R., Sevgan S., Ekesi S., and Tamò M., 2019, Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa, Pest Management Science, 75(9): 2446-2454. https://doi.org/10.1002/ps.5480 Villaverde J., Sevilla-Morán B., Sandín-España P., López-Goti C., and Alonso-Prados J., 2014, Biopesticides in the framework of the European Pesticide Regulation (EC) No, 1107/2009, Pest Management Science, 70(1): 2-5. https://doi.org/10.1002/ps.3663 Wafa J., Fatma D., Luc F., and Souad R., 2020, Review on biopesticide production by Bacillus thuringiensis subsp, kurstaki since 1990: Focus on bioprocess parameters, Process Biochemistry, 98: 224-232. https://doi.org/10.1016/j.procbio.2020.07.023 Yaqoob A., Shahid A., Samiullah T., Rao A., Khan M., Tahir S., Mirza S., and Husnain T., 2016, Risk assessment of Bt crops on the non-target plant-associated insects and soil organisms, Journal of The Science of Food and Agriculture, 96(8): 2613-2619. https://doi.org/10.1002/jsfa.7661 Yezza A., Tyagi R., Valéro J., Surampalli R., and Smith J., 2004, Scale-up of biopesticide production processes using wastewater sludge as a raw material, Journal of Industrial Microbiology and Biotechnology, 31: 545-552. https://doi.org/10.1007/s10295-004-0176-z Zhou Y., Wu Z.Q., Zhang J., Wan Y.S., Jin W.J., Li Y.Z., and Fang X.J., 2020, Cry80Aa1, a novel Bacillus thuringiensis toxin with mosquitocidal activity to Culex pipiens pallens, Journal of Invertebrate Pathology, 173: 107386. https://doi.org/10.1016/j.jip.2020.107386 Zhu F., Lavine L., O'Neal S., Lavine M., Foss C., and Walsh D., 2016, Insecticide resistance and management strategies in urban ecosystems, Insects, 7(1): 2. https://doi.org/10.3390/insects7010002

RkJQdWJsaXNoZXIy MjQ4ODYzNA==