Bt_2024v15n2

Bt Research 2024, Vol.15, No.1, 65-75 http://microbescipublisher.com/index.php/bt 74 Guo Z., Sun D., Kang S., Zhou J., Gong L., Qin J., Guo L., Zhu L., Bai Y., Luo L., and Zhang Y., 2019, CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth Plutella xylostella (L.), Insect Biochemistry and Molecular Biology, 107: 31-38. https://doi.org/10.1016/j.ibmb.2019.01.009 Kang S., Sun D., Qin J.Y., Guo L.H., Zhu L., Bai Y., Wu Q.J., Wang S.L., Zhou X.G., Guo Z.J., and Zhang Y.J., 2021, Fused: a promising molecular target for an RNAi-based strategy to manage Bt resistance in Plutella xylostella L., Journal of Pest Science, 2021: 1-14. https://doi.org/10.1007/S10340-021-01374-3 Kaur S., 2012, Risk assessment of Bt transgenic crops, Bacillus Thuringiensis Biotechnology, 2012: 41-85. https://doi.org/10.1007/978-94-007-3021-2_3. Keswani C., Sarma B.K., and Singh H.B., 2016, Synthesis of policy support quality control and regulatory management of biopesticides in sustainable agriculture, Agriculturally Important Microorganisms: Commercialization and Regulatory Requirements in Asia, 2016: 3-12. https://doi.org/10.1007/978-981-10-2576-1_1 Kostov K., Krogh P., Damgaard C., Sweet J., and Hendriksen N., 2014, Are soil microbial endpoints changed by Bt crops compared with conventional crops? a systematic review protocol, Environmental Evidence, 3: 1-11. https://doi.org/10.1186/2047-2382-3-11 Kumar P., Kamle M., Borah R., Mahato D., and Sharma B., 2021, Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture, Egyptian Journal of Biological Pest Control, 31: 1-7. https://doi.org/10.1186/s41938-021-00440-3 Li Y.J., Wang C., Ge L., Hu C., Wu G.G., Sun Y., Song L.L., Wu X., Pan A.H., Xu Q.Q., Shi J.L., Liang J.G., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Li Z., Zhou S., Wang Y., Liu Z., and Xu R., 2011, Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: effects of heavy metals, Bioresource Technology, 109(7): 4820-4826. https://doi.org/10.1016/j.biortech.2010.12.098 Manachini B., Arizza V., Rinaldi A., Montalto V., and Sarà G., 2013, Eco-physiological response of two marine bivalves to acute exposition to commercial Bt-based pesticide., Marine environmental Research, 83: 29-37. https://doi.org/10.1016/j.marenvres.2012.10.006 Manjunath T., 2023, Integration of augmentative biocontrol with synthetic pesticides and other control methods for IPM-challenges and prospects, Journal of Biological Control, 36(4): 179-186. https://doi.org/10.18311/jbc/2022/34091 Martinez J., and Caprio M., 2016, IPM use with the deployment of a non-high dose Bt pyramid and mitigation of resistance for western corn rootworm (Diabrotica virgifera virgifera), Environmental Entomology, 45(3): 747-761. https://doi.org/10.1093/ee/nvw015 Mattedi A., Sabbi E., Farda B., Djebaili R., Mitra D., Ercole C., Cacchio P., Gallo M., and Pellegrini M., 2023, Solid-state fermentation: applications and future perspectives for biostimulant and biopesticides production, Microorganisms, 11(6): 1408. https://doi.org/10.3390/microorganisms11061408 Naranjo S., 2011, Impacts of Bt transgenic cotton on integrated pest management, Journal of Agricultural and Food Chemistry, 59(11): 5842-5851. https://doi.org/10.1021/jf102939c Oliveira J., Fraceto L., Bravo A., and Polanczyk R., 2021, Encapsulation strategies for Bacillus thuringiensis: from now to the future, Journal of Agricultural and Food Chemistry, 69(16): 4564-4577. https://doi.org/10.1021/acs.jafc.0c07118 Ortiz A., and Sansinenea E., 2023, Genetically modified plants based on Bacillus genes and commercial Bacillus-based biopesticides for sustainable agriculture, Horticulturae, 9(9): 963. https://doi.org/10.3390/horticulturae9090963 Pan X.H., Huang T.Z., Fang Y., Rao W.H., Guo X.P., Nie D.Y, Zhang D.Y., Cao F., Guan X., and Chen Z., 2021, Effect of Bacillus thuringiensis biomass and insecticidal activity by cultivation with vegetable wastes, Royal Society Open Science, 8(3): 201564. https://doi.org/10.1098/rsos.201564 Pascoli M., Jacques M., Agarrayua D., Ávila D., Lima R., and Fraceto L., 2019, Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture: an ecotoxicological perspective, The Science of the Total Environment, 677: 57-67. https://doi.org/10.1016/j.scitotenv.2019.04.345 Pino-Otín M.R., Val J., Ballestero D., Navarro E., Sánchez E., González-Coloma A., and Mainar A., 2019, Ecotoxicity of a new biopesticide produced by Lavandula luisieri on non-target soil organisms from different trophic levels, The Science of the Total Environment, 671: 83-93. https://doi.org/10.1016/j.scitotenv.2019.03.293 Qaim M., Pray C.E., and Zilberman D., 2008, Economic and social considerations in the adoption of Bt crops, Dordrecht: Springer Netherlands, 329-356. https://doi.org/10.1007/978-1-4020-8373-0_12

RkJQdWJsaXNoZXIy MjQ4ODYzNA==