Bt Research 2024, Vol.15, No.1, 53-64 http://microbescipublisher.com/index.php/bt 64 Ran F., Hsu P., Wright J., Agarwala V., Agarwala V., Scott D., and Zhang F., 2013, Genome engineering using the CRISPR-Cas9 system, Nature Protocols, 8(11): 2281-2308. https://doi.org/10.1038/nprot.2013.143 Ran F., Hsu P., Wright J., Agarwala V., Agarwala V., Scott D., and Zhang F., 2013, Genome engineering using the CRISPR-Cas9 system, Nature Protocols, 8(11): 2281-2308. https://doi.org/10.1038/nprot.2013.143 Sander J., and Joung J., 2014, CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347-355. https://doi.org/10.1038/nbt.2842 Schulze S., and Lammers M., 2020, The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, znf and tale nucleases, RNA interference, and Cre/loxP, ChemTexts, 7(1): 3. https://doi.org/10.1007/s40828-020-00126-7 Seki A., and Rutz S., 2018, Optimized rnp transfection for highly efficient crispr/cas9-mediated gene knockout in primary t cells, The Journal of Experimental Medicine, 215: 985-997. https://doi.org/10.1084/jem.20171626 Sekine R., Kawata T., and Muramoto T., 2018, CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium, Scientific Reports, 8(1): 8471. https://doi.org/10.1038/s41598-018-26756-z Shinwari Z.K., Tanveer F., and Khalil A.T., 2018, Ethical issues regarding crispr mediated genome editing, Current Issues in Molecular Biology, 26(1): 103-110. https://doi.org/10.21775/cimb.026.103 Soonsanga S., Luxananil P., and Promdonkoy B., 2020, Modulation of cas9 level for efficient crispr-cas9-mediated chromosomal and plasmid gene deletion in Bacillus thuringiensis, Biotechnology Letters, 42: 625-632. https://doi.org/10.1007/s10529-020-02809-0 Tavakoli K., Pour-Aboughadareh A., Kianersi F., Poczai P., Etminan A., and Shooshtari L., 2021, Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences, BioTech, 10(3): 14. https://doi.org/10.3390/biotech10030014. Wang H., Li M., Lee C., Chakraborty S., Kim H., Bao G., and Leong K., 2017, CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery, Chemical Reviews, 117: 9874-9906. https://doi.org/10.1021/acs.chemrev.6b00799. Wang H., Russa M.L., and Qi L.S., 2016, CRISPR/Cas9 in genome editing and beyond, Annual Review of Biochemistry, 85(1): 227-264. https://doi.org/10.1146/annurev-biochem-060815-014607. Wei T., Cheng Q., Farbiak L., Anderson D.G., Langer R., and Siegwart D.J., 2020, Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo crispr/cas-based genome editing, ACS nano, 14(8): 9243-9262. https://doi.org/10.1021/acsnano.0c04707 Zhang F., Wen Y., and Guo X., 2014, CRISPR/Cas9 for genome editing: progress, implications and challenges, Human Molecular Genetics, 23: R40-60. https://doi.org/10.1093/hmg/ddu125 Zhang S., Shen J., Li D., and Cheng Y., 2021, Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing, Theranostics, 11: 614-648. https://doi.org/10.7150/thno.47007 Zhou Y., Zhang W.F., Wan Y.S. Jin W.J., Zhang Y., Li Y.Z., Chen B.S., JIang M.G., Fang X.J., 2024, Mosquitocidal toxin-like islands in Bacillus thuringiensis S2160-1 revealed by complete-genome sequence and MS proteomic analysis, Scientific Reports, 14(1): 15216. Zhu H., Li C., and Gao C., 2020, Applications of crispr-cas in agriculture and plant biotechnology, Nature Reviews Molecular Cell Biology, 21(11): 661-677. https://doi.org/10.1038/s41580-020-00288-9
RkJQdWJsaXNoZXIy MjQ4ODYzNA==