Bt Research 2024, Vol.15, No.1, 42-52 http://microbescipublisher.com/index.php/bt 52 Soberón M., Pardo-López L., López I., Gómez I., Tabashnik B., and Bravo A, 2007, Engineering modified bt toxins to counter insect resistance, Science, 318: 1640-1642. https://doi.org/10.1126/science.1146453 Stevens T., Song S., Bruning J., Choo A., and Baxter S, 2017, Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor, Insect Biochemistry and Molecular Biology, 80: 61-70. https://doi.org/10.1016/j.ibmb.2016.11.008 Tabashnik B, 2015, ABCs of Insect Resistance to Bt, PLoS Genetics, 11. https://doi.org/10.1371/journal.pgen.1005646 Tabashnik B., Gassmann A., Crowder D., and Carrière Y, 2008, Insect resistance to Bt crops: evidence versus theory, Nature Biotechnology, 26: 199-202. https://doi.org/10.1038/nbt1382 Tabashnik B., Rensburg J., and Carrière Y, 2009, Field-evolved insect resistance to Bt crops: definition theory and data, Journal of Economic Entomology, 102: 2011-2025. https://doi.org/10.1603/029.102.0601 Vachon V., Laprade R., and Schwartz J, 2012, Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review, Journal of Invertebrate Pathology, 111(1): 1-12. https://doi.org/10.1016/j.jip.2012.05.001 Wang Y., Adegawa S., Miyamoto K., Takasu Y., Iizuka T., Wada S., Mang D., Li X., Kim S., Sato R., and Watanabe K, 2021, ATP-binding cassette transporter subfamily C members 2 3 and cadherin protein are susceptibility-determining factors in Bombyx mori for multiple Bacillus thuringiensis Cry1 toxins, Insect Biochemistry and Molecular Biology, 103649. https://doi.org/10.1016/j.ibmb.2021.103649 Wang Y., Wang J., Fu X., Nageotte J., Silverman J., Bretsnyder E., Chen D., Rydel T., Bean G., Li K., Kraft E., Gowda A., Nance A., Moore R., Pleau M., Milligan J., Anderson H., Asiimwe P., Evans A., Moar W., Martinelli S., Head G., Haas J., Baum J., Yang F., Kerns D., and Jerga A, 2019, Bacillus thuringiensis Cry1Da_7 and Cry1B.868 Protein Interactions with Novel Receptors Allow Control of Resistant Fall Armyworms Spodoptera frugiperda (J.E.Smith), Applied and Environmental Microbiology, 85. https://doi.org/10.1128/AEM.00579-19 Yuan X., Zhao M., Wei J., Zhang W., Wang B., Khaing M., and Liang G, 2017, New insights on the role of alkaline phosphatase 2 fromSpodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa, Journal of Insect Physiology, 98: 101-107. https://doi.org/10.1016/j.jinsphys.2016.12.004 Zhang R., Hua G., Andacht T., and Adang M, 2008, A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae, Biochemistry 47(43): 11263-11272. https://doi.org/10.1021/bi801181g Zhang W.F., Zhang J., Crickmore N., Wu Z.Q., Yang Y.R, Qian J.Z., Wu H.P., Wang R.P., and Fang X.J., 2014, Identification of a mosquitocidal toxin from Bacillus thuringiensis using mass spectrometry, World Journal of Microbiology and Biotechnology, 30: 3273-3277. https://doi.org/10.1007/s11274-014-1744-7 Zhang X., Candas M., Griko N., Taussig R., and Bulla L, 2006, A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis, Proceedings of the National Academy of Sciences of the United States of America, 103(26): 9897-9902. https://doi.org/10.1073/PNAS.0604017103 Zhong C., Ellar D., Bishop A., Johnson C., Lin S., and Hart E, 2000, Characterization of a Bacillus thuringiensis delta-endotoxin which is toxic to insects in three orders, Journal of Invertebrate Pathology, 76(2): 131-139. https://doi.org/10.1006/JIPA.2000.4962
RkJQdWJsaXNoZXIy MjQ4ODYzNA==