Bt_2024v15n1

Bt Research 2024, Vol.15, No.1, 42-52 http://microbescipublisher.com/index.php/bt 51 Dutta T., Veeresh A., Phani V., Kundu A., Santhoshkumar K., Mathur C., Sagar D., and Sreevathsa R, 2022, Molecular characterization and functional analysis of Cry toxin receptor‐like genes from the model insect Galleria mellonella, Insect Molecular Biology, 31: 434-446. https://doi.org/10.1111/imb.12770 Gassmann A., and Reisig D, 2022, Management of insect pests with Bt crops in the United States, Annual Review of Entomology, 68: 31-49. https://doi.org/10.1146/annurev-ento-120220-105502 Gómez I., Arenas I., Benitez I., Miranda-Ríos J., Becerril B., Grande R., Almagro J., Bravo A., and Soberón M., 2006, Specific Epitopes of Domains II and III of Bacillus thuringiensis Cry1Ab Toxin Involved in the Sequential Interaction with Cadherin and Aminopeptidase-N Receptors in Manduca sexta, Journal of Biological Chemistry, 281: 34032-34039. https://doi.org/10.1074/jbc.M604721200 Gómez I., Dean D., Bravo A., and Soberón M, 2003, Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin, Biochemistry 42(35): 10482-10489. https://doi.org/10.1021/BI034440P Guo Z., Sun D., Kang S., Zhou J., Gong L., Qin J., Guo L., Zhu L., Bai Y., Luo L., and Zhang Y, 2019, CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth Plutella xylostella (L.), Insect Biochemistry and Molecular Biology, 107: 31-38. https://doi.org/10.1016/j.ibmb.2019.01.009 Heckel D, 2012, Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action, Pesticide Biochemistry and Physiology, 104: 103-110. https://doi.org/10.1016/J.PESTBP.2012.05.007 Heckel D, 2021, The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture, Insects, 12. https://doi.org/10.3390/insects12050389 Hu X., Zhang X., Zhong J., Liu Y., Zhang C., Xie Y., Lin M., Xu C., Lu L., Zhu Q., and Liu X, 2018, Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis, International Journal of Biological Macromolecules, 111: 822-831. https://doi.org/10.1016/j.ijbiomac.2017.12.135 Huang J., Xu Y., Zuo Y., Yang Y., Tabashnik B., and Wu Y, 2020, Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts, Insect Biochemistry and Molecular Biology, 103361. https://doi.org/10.1016/j.ibmb.2020.103361 Li J., Ma Y., Yuan W., Xiao Y., Liu C., Wang J., Peng J., Peng R., Soberón M., Bravo A., Yang Y., and Liu K, 2017, FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes, Insect Biochemistry and Molecular Biology, 88: 1-11. https://doi.org/10.1016/j.ibmb.2017.07.004 Li Q., Li M., Zhu M., Zhong J., Wen L., Zhang J., Zhang R., Gao Q., Yu X., and Lu Y, 2021, Genome‐wide identification and comparative analysis of Cry toxin receptor families in 7 insect species with a focus on Spodoptera litura, Insect Science, 29. https://doi.org/10.1111/1744-7917.12961 Likitvivatanavong S., Chen J., Evans A., Bravo A., Soberón M., and Gill S, 2011, Multiple receptors as targets of Cry toxins in mosquitoes, Journal of Agricultural and Food Chemistry, 5(7): 2829-2838. https://doi.org/10.1021/jf1036189 Liu L., Boyd S., Bulla L., and Winkler D, 2018, “The defined toxin-binding region of the cadherin g-protein coupled receptor BT-R1 for the active Cry1Ab toxin of Bacillus thuringiensis”, Journal of Proteomics and Bioinformatics, 11: 201-210. https://doi.org/10.4172/0974-276X.1000487 Liu L., Wilcox X., Fisher A., Boyd S., Zhi J., Winkler D., and Bulla L, 2022, Functional and structural analysis of the toxin-binding site of the cadherin g-protein-coupled receptor BT-R1 for Cry1A toxins of Bacillus thuringiensis, Biochemistry, 61(9): 752-766. https://doi.org/10.1021/acs.biocheM.2c00089 Mendoza-Almanza G., Esparza-Ibarra E., Ayala-Luján J., Mercado-Reyes M., Godina-González S., Hernández-Barrales M., and Olmos-Soto J, 2020, The cytocidal spectrum of Bacillus thuringiensis toxins: from insects to human cancer cells, Toxins, 12. https://doi.org/10.3390/toxins12050301 Pardo-López L., Soberón M., and Bravo A, 2013, Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action insect resistance and consequences for crop protection, FEMS Microbiology Reviews, 37(1): 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x Rathinam M., Kesiraju K., Singh S., Thimmegowda V., Rai V., Pattanayak D., and Sreevathsa R, 2019, Molecular interaction-based exploration of the broad spectrum efficacy of a Bacillus thuringiensis insecticidal chimeric protein Cry1AcF, Toxins, 11. https://doi.org/10.3390/toxins11030143

RkJQdWJsaXNoZXIy MjQ4ODYzNA==