Bt Research 2024, Vol.15, No.1, 20-29 http://microbescipublisher.com/index.php/bt 28 Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Adeniji A., Ayangbenro A., and Babalola O., 2021, Genomic exploration of Bacillus thuringiensis MORWBS1.1-candidate biocontrol agent, predicts genes for biosynthesis of zwittermicin, 4,5-DOPA dioxygenase extradiol, and quercetin 2,3-dioxygenase, Molecular Plant-Microbe Interactions: MPMI, 34(6): 602-605. https://doi.org/10.1094/MPMI-10-20-0272-SC Alcaraz L., Moreno-Hagelsieb G., Eguiarte L., Souza V., Herrera-Estrella L., and Olmedo G., 2010, Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics, BMC Genomics, 11: 332-332. https://doi.org/10.1186/1471-2164-11-332 Baek I., Lee K., Goodfellow M., and Chun J., 2019, Comparative genomic and phylogenomic analyses clarify relationships within and between Bacillus cereus and Bacillus thuringiensis: proposal for the recognition of two Bacillus thuringiensis genomovars, Frontiers in Microbiology, 10: 01978. https://doi.org/10.3389/fmicb.2019.01978 Biggel M., Etter D., Corti S., Brodmann P., Stephan R., Ehling-Schulz M., and Johler, S., 2022, Whole genome sequencing reveals biopesticidal origin of Bacillus thuringiensis in foods, Frontiers in Microbiology, 12: 775669. https://doi.org/10.3389/fmicb.2021.775669 Bolotin A., Gillis A., Sanchis V., Nielsen-Leroux C., Mahillon J., Lereclus D., and Sorokin A., 2017, Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis, Research in Microbiology, 168(4): 331-344. https://doi.org/10.1016/j.resmic.2016.10.008 Cao Z., Tan T., Jiang K., Mei S., Hou X., and Cai J., 2018, Complete genome sequence of Bacillus thuringiensis L-7601, a wild strain with high production of melanin, Journal of Biotechnology, 275: 40-43. https://doi.org/10.1016/j.jbiotec.2018.03.020 Chelliah R., Wei S., Park B., Rubab M., Dalirii E., Barathikannan K., Jin Y., and Oh D., 2019, Whole genome sequence of Bacillus thuringiensis ATCC10792 and improved discrimination of Bacillus thuringiensis fromBacillus cereus group based on novel biomarkers, Microbial Pathogenesis, 129: 284-297. https://doi.org/10.1016/j.micpath.2019.02.014 Deng C., Slamti L., Raymond B., Liu G., Lemy C., Gominet M., Yang J., Wang H., Peng Q., Zhang J., Lereclus D., and Song F., 2014, Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain, The ISME Journal, 9: 286-296. https://doi.org/10.1038/ismej.2014.122 Ehling-Schulz M., Lereclus D., and Koehler T., 2019, The Bacillus cereus group: Bacillus species with pathogenic potential, Microbiology Spectrum, 7: 3. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018 Elleuch J., Zghal R., Lacoix M., Chandre F., Tounsi S., and Jaoua S., 2015, Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: genome dynamic and toxins stability, Microbiological Research, 176: 48-54. https://doi.org/10.1016/j.micres.2015.04.007 Fayad N., Kambris Z., Chamy L., Mahillon J., and Awad M., 2020, A novel antidipteran Bacillus thuringiensis strain: unusual cry toxin genes in a highly dynamic plasmid environment, Applied and Environmental Microbiology, 87(5): e02294-20. https://doi.org/10.1128/AEM.02294-20 Jia N., Ding M., Gao F., and Yuan Y., 2016, Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium, Scientific Reports, 6: 28794. https://doi.org/10.1038/srep28794 Liu J., Li L., Peters B., Li B., Chen D., Xu Z., and Shirtliff M., 2017, Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-Bt15426, Microbial Pathogenesis, 108: 55-60. https://doi.org/10.1016/j.micpath.2017.05.006 Pacheco S., Gómez I., Chiñas M., Sánchez J., Soberón M., and Bravo A., 2021, Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes, Frontiers in Microbiology, 12: 758314. https://doi.org/10.3389/fmicb.2021.758314 Peralta C., Sauka D., Pérez M., Onco M., Fiodor A., Caballero J., Caballero P., Berry C., Valle E., and Palma L., 2021, Genome sequence analysis and insecticidal characterization of Bacillus thuringiensis Bt-UNVM_94, a strain showing dual insecticidal activity against lepidopteran and coleopteran pests, Proceedings of 1st International Electronic Conference on Toxins, 65: 1-6. https://doi.org/10.3390/iect2021-09139 Qasem J., AlAli E., Al-Mouqati S., and Al-Shayji Y., 2015, Genetic diversity study of locally isolated Bacillus thuringiensis strains from Kuwait using random amplified polymorphic DNA analysis, British Microbiology Research Journal, 7: 193-201. https://doi.org/10.9734/BMRJ/2015/17009
RkJQdWJsaXNoZXIy MjQ4ODYzNA==