JVR_2024v14n5

Journal of Vaccine Research 2024, Vol.14, No.5, 255-268 http://medscipublisher.com/index.php/jvr 267 Kim S., and Cho S., 2022, The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment, Frontiers in Pharmacology, 13: 868695. https://doi.org/10.3389/fphar.2022.868695 Knudson K., Hicks K., Luo X., Chen J., Schlom J., and Gameiro S., 2018, M7824, a novel bifunctional anti-PD-L1/TGFβ trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine, Oncoimmunology, 7(2): 1426519. https://doi.org/10.1080/2162402X.2018.1426519 Liu L., Wang Y., Miao L., Liu Q., Musetti S., Li J., and Huang L., 2018, Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple-negative breast cancer, Molecular Therapy, 26(1): 45-55. https://doi.org/10.1016/j.ymthe.2017.10.020 Marek R., Chen A., Xu R., Wei J., Wang T., Yang X., Lei G., Heiland T., and Hartman Z., 2022, Abstract 3564: vaccination using different platforms encoding HER2-LAMP with heterologous boosting enhances adaptive HER2-specific immunity to enable potent anti-tumor responses, Cancer Research, 82(12): 3564. https://doi.org/10.1158/1538-7445.am2022-3564 Mittendorf E.A., Clifton G.T., Holmes J.P., Schneble E.J., van Echo D., Ponniah S., and Peoples G.E., 2016, Phase I trial of the safety and immunogenicity of a tri-antigen vaccine targeting HER2, IGFBP-2, and IGF-IR in patients with non-metastatic breast cancer, Vaccine, 34(42): 4775-4782. https://doi.org/10.1016/j.vaccine.2016.08.009 Mittendorf E., Lu B., Melisko M., Hiller J., Bondarenko I., Brunt A., Sergii G., Petráková K., and Peoples G., 2019, Efficacy and safety analysis of Nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial, Clinical Cancer Research, 25(14): 4248-4254. https://doi.org/10.1158/1078-0432.CCR-18-2867 Özverel C., Uyanikgil Y., Karaboz I., and Nalbantsoy A., 2020, Investigation of the combination of anti-PD-L1 mAb with HER2/neu-loaded dendritic cells and QS-21 saponin adjuvant: Effect against HER2-positive breast cancer in mice, Immunopharmacology and Immunotoxicology, 42(4): 346-357. https://doi.org/10.1080/08923973.2020.1775644 Peoples G., Holmes J., Hueman M., Mittendorf E., Amin A., Khoo S., Dehqanzada Z., Gurney J., Woll M., Ryan G., Storrer C., Craig D., Ioannides C., and Ponniah S., 2008, Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. military cancer institute clinical trials group study I-01 and I-02, Clinical Cancer Research, 14(3): 797-803. https://doi.org/10.1158/1078-0432.CCR-07-1448 Perez S.A., Kallinteris N.L., Bisias Z., Tzonis P., Mahaira L.G., Sotiropoulou P.A., and Papamichail M., 2014, Long-term clinical benefit of adjuvant breast cancer vaccine: 5-year efficacy of E75 with multiple booster inoculations, Cancer Immunology, Immunotherapy, 63(4): 511-519. https://doi.org/10.1007/s00262-014-1521-1 Salazar L., Goodell V., O'Meara M., Knutson K., Dang Y., Rosa C., Guthrie K., and Disis M., 2016, Persistent immunity and survival after immunization with a HER2/neu (HER2) vaccine, Journal of Clinical Oncology, 27(15_suppl): 3010. https://doi.org/10.1200/jco.2009.27.15_suppl.3010 Salemme V., Centonze G., Cavallo F., Defilippi P., and Conti L., 2021, The crosstalk between tumor cells and the immune microenvironment in breast cancer: Implications for immunotherapy, Frontiers in Oncology, 11: 610303. https://doi.org/10.3389/fonc.2021.610303 Schlom J., Arlen P. M., and Gulley J. L., 2014, Recent advances in the development of breast cancer vaccines, Cancer Journal, 20(1): 15-24. https://doi.org/10.1097/PPO.0000000000000021 Singer C., Pfeiler G., Hubalek M., Bartsch R., Stoger H., Pichler A., Petru E., Bjelic-Radisic V., Greil R., Rudas M., Tea M., Wette V., Petzer A., Sevelda P., Egle D., Dubsky P., Filipits M., Fitzal F., Exner R., Jakesz R., Balić M., Tinchon C., Bago-Horvath Z., Frantal S., and Gnant M., 2020, Efficacy and safety of the therapeutic cancer vaccine tecemotide (L-BLP25) in early breast cancer: results from a prospective, randomised, neoadjuvant phase II study (ABCSG 34), European Journal of Cancer, 132: 43-52. https://doi.org/10.1016/j.ejca.2020.03.018 Stanton S., Wisinski K., Gwin W., Coveler A., Liao J., Burkard M., Bailey H., Kim K., Havinghurst T., DeShong K., Childs J., Dimond E., Wojtowicz M., Heckman-Stoddard B., Cecil D., and Disis M., 2023, Abstract P2-02-02: Phase I trial of the safety and immunogenicity of a tri-antigen vaccine targeting HER2, IGFBP-2, and IGF-IR in patients with non-metastatic breast cancer, Cancer Research, 83(5_Suppl): P2-02-02. https://doi.org/10.1158/1538-7445.sabcs22-p2-02-02 Suekane S., Yutani S., Toh U., Yoshiyama K., and Itoh K., 2022, Immune responses of patients without cancer recurrence after a cancer vaccine over a long term, Molecular and Clinical Oncology, 16: 91. https://doi.org/10.3892/mco.2022.2545 Thomas R., Al-Khadairi G., and Decock J., 2021, Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects, Frontiers in Oncology, 10: 600573. https://doi.org/10.3389/fonc.2020.600573 Tran T., Diniz M., Dransart E., Gey A., Godefroy S., Sibley C., Johannes L., and Tartour E., 2015, Abstract 2504: a therapeutic Her2-Neu cancer vaccine alone or in combination with anti-Her2 mAb inhibits tumor growth in HLA-A2 transgenic mice, Cancer Research, 75(15_Suppl): 2504-2504. https://doi.org/10.1158/1538-7445.AM2015-2504 Vincent B., File D., McKinnon K., Moore D., Frelinger J., Collins E., Ibrahim J., Bixby L., Reisdorf S., Laurie S., Park Y., Anders C., Collichio F., Muss H., Carey L., van Deventer H., Dees E., and Serody J., 2023, Efficacy of a dual-epitope dendritic cell vaccine as part of combined immunotherapy for

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==