JVR_2024v14n5

Journal of Vaccine Research 2024, Vol.14, No.5, 243-254 http://medscipublisher.com/index.php/jvr 252 Baden L., El Sahly H., Essink B., Kotloff K., Frey S., Novak R., Diemert D., Spector S., Rouphael N., Creech C., McGettigan J., Kehtan S., Segall N., Solis J., Brosz A., Fierro C., Schwartz H., Neuzil K., Corey L., Gilbert P., Janes H., Follmann D., Marovich M., Mascola J., Polakowski L., Ledgerwood J., Graham B., Bennett H., Pajon R., Knightly C., Leav B., Deng W., Zhou H., Han S., Ivarsson M., Miller J., and Zaks T., 2020, Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine, The New England Journal of Medicine, 384(5): 403-416. https://doi.org/10.1056/NEJMoa2035389 Bernal J., Andrews N., Gower C., Robertson C., Stowe J., Tessier E., Simmons R., Cottrell S., Roberts R., O’Doherty M., Brown K., Cameron C., Stockton D., McMenamin J., and Ramsay M., 2021, Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, admissions, and mortality in older adults in England: test negative case-control study, The BMJ, 373: n1088. https://doi.org/10.1136/bmj.n1088 Bezbaruah R., Chavda V., Nongrang L., Alom S., Deka K., Kalita T., Ali F., Bhattacharjee B., and Vora L., 2022, Nanoparticle-based delivery systems for vaccines, Vaccines, 10(11): 1946. https://doi.org/10.3390/vaccines10111946 Cappellano G., Abreu H., Casale C., Dianzani U., and Chiocchetti A., 2021, Nano-microparticle platforms in developing next-generation vaccines, Vaccines, 9(6): 606 https://doi.org/10.3390/vaccines9060606 Chatzikleanthous D., O’Hagan D., and Adamo R., 2021, Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines, Molecular Pharmaceutics, 10(6): 447/ https://doi.org/10.1021/acs.molpharmaceut.1c00447 Curley S., and Putnam D., 2022, Biological nanoparticles in vaccine development, Frontiers in Bioengineering and Biotechnology, 10: 867119. https://doi.org/10.3389/fbioe.2022.867119 Garg A., and Dewangan H., 2020, Nanoparticles as adjuvants in vaccine delivery, Critical Reviews in Therapeutic Drug Carrier Systems, 37(2): 183-204. https://doi.org/10.1615/critrevtherdrugcarriersyst.2020033273 Gomes A., Mohsen M., and Bachmann M., 2017, Harnessing nanoparticles for immunomodulation and vaccines, Vaccines, 5(1): 6. https://doi.org/10.3390/vaccines5010006 Grabbe S., Haas H., Diken M., Kranz L., Langguth P., and Şahin U., 2016, Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma, Nanomedicine, 11(20): 2723-2734. https://doi.org/10.2217/NNM-2016-0275 Gupta J., Safdari H., and Hoque M., 2021, Nanoparticle-mediated cancer immunotherapy, Seminars in Cancer Biology, 69: 307-324. https://doi.org/10.1016/j.semcancer.2020.03.015 Guo S., Fu D., Utupova A., Sun D., Zhou M., Jin Z., and Zhao K., 2019, Applications of polymer-based nanoparticles in the vaccine field, Nanotechnology Reviews, 8: 143-155. https://doi.org/10.1515/ntrev-2019-0014 Gu P., Wusiman A., Wang S., Zhang Y., Liu Z., Hu Y., Liu J., and Wang D., 2019, Polyethylenimine-coated PLGA nanoparticles-encapsulated angelica sinensis polysaccharide as an adjuvant to enhance immune responses, Carbohydrate Polymers, 223: 115128. https://doi.org/10.1016/j.carbpol.2019.115128 Hanson M., Crespo M., Abraham W., Moynihan K., Szeto G., Chen S., Melo M., Mueller S., and Irvine D., 2015, Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants, The Journal of Clinical Investigation, 125(6): 2532-2546. https://doi.org/10.1172/JCI79915 Hussein M., Mumtaz M., Nasir I., and Abdullahi A., 2023, Nanotechnology-based vaccines, Biology, Medicine, and Natural Product Chemistry, 12(1): 343-361. https://doi.org/10.14421/biomedich.2023.121.343-361 Jin J., Tang S., Rong M., and Zhang M., 2018, Synergistic effect of dual targeting vaccine adjuvant with aminated β-glucan and CpG-oligodeoxynucleotides for both humoral and cellular immune responses, Acta Biomaterialia, 78: 211-223. https://doi.org/10.1016/j.actbio.2018.08.002 Jung H., Lee S., Lee S., Youn H., and Im H., 2022, Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging, Theranostics, 12: 7509-7531. https://doi.org/10.7150/thno.77259 Kelly H., Kent S., and Wheatley A., 2019, Immunological basis for enhanced immunity of nanoparticle vaccines, Expert Review of Vaccines, 18: 269-280. https://doi.org/10.1080/14760584.2019.1578216 Klein N., Stockwell M., DeMarco M., Gaglani M., Kharbanda A., Irving S., Rao S., Grannis S., Dascomb K., Murthy K., Rowley E., Dalton A., DeSilva M., Dixon B., Natarajan K., Stenehjem E., Naleway A., Lewis N., Ong T., Patel P., Konatham D., Embí P., Reese S., Han J., Grisel N., Goddard K., Barron M., Dickerson M., Liao I., Fadel W., Yang D., Arndorfer J., Fireman B., Griggs E., Valvi N., Hallowell C., Zerbo O., Reynolds S., Ferdinands J., Wondimu M., Williams J., Bozio C., Link-Gelles R., Azziz-Baumgartner E., Schrag S., Thompson M., and Verani J., 2022, Effectiveness of COVID-19 Pfizer-BioNTech BNT162b2 mRNA vaccination in preventing COVID-19-associated emergency department and urgent care encounters and hospitalizations among nonimmunocompromised children and adolescents aged 5-17 years—VISION Network, 10 States, April 2021-January 2022, Morbidity and Mortality Weekly Report, 71: 352-358. https://doi.org/10.15585/mmwr.mm7109e3 Li P., Shi G., Zhang X., Song H., Zhang C., Wang W., Li C., Song B., Wang C., and Kong D., 2016, Guanidinylated cationic nanoparticles as robust protein antigen delivery systems and adjuvants for promoting antigen-specific immune responses in vivo, Journal of Materials Chemistry B, 4(33): 5608-5620.

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==