JVR_2024v14n4

Journal of Vaccine Research 2024, Vol.14, No.4, 157-169 http://medscipublisher.com/index.php/jvr 166 There is a critical need for long-term studies to evaluate the durability of immune responses and to understand the potential risks associated with vaccine-associated enhancement of infection. Furthermore, research should focus on identifying reliable correlates of protection that can guide the design of next-generation vaccines. The scientific community must also prioritize the exploration of new vaccine platforms and adjuvants that can enhance the breadth and depth of immune responses. As global health challenges continue to evolve, the development of a universal influenza vaccine remains a critical goal that warrants ongoing investment and collaboration. Acknowledgments I would like to thank two anonymous peer reviewers for their suggestions on my manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Bajic G., van der Poel C.E., Kuraoka M., Schmidt A.G., Carroll M.C., Kelsoe G., and Harrison S.C., 2019, Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies, Scientific Reports, 9(1): 3492. https://doi.org/10.1038/s41598-019-40175-8 PMid:30837606 PMCid:PMC6401307 Blokhina E., Mardanova E., Stepanova L., Tsybalova L., and Ravin N.V., 2020, Plant-produced recombinant influenza A virus candidate vaccine based on flagellin linked to conservative fragments of M2 protein and hemagglutintin, Plants, 9(2): 162. https://doi.org/10.3390/plants9020162 PMid:32013187 PMCid:PMC7076671 Carter D.M., Darby C.A., Lefoley B.C., Crevar C.J., Alefantis T., Oomen R., Anderson S.F., Strugnell T., Cortés-Garcia G., Vogel T.U., Parrington M., Kleanthous H., and Ross T.M., 2016, Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses, Journal of Virology, 90(9): 4720-4734. https://doi.org/10.1128/JVI.03152-15 PMid:26912624 PMCid:PMC4836330 Chang T.Z., Stadmiller S.S., Staskevicius E., and Champion J.A., 2017, Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing, Biomaterials Science, 5(2): 223-233. https://doi.org/10.1039/C6BM00500D PMid:27918020 PMCid:PMC5285395 Cohen A.A., Yang Z., Gnanapragasam P.N.P., Ou S., Dam K.M.A., Wang H., and Bjorkman P.J., 2021, Construction, characterization, and immunization of nanoparticles that display a diverse array of influenza HA trimers, PloS One, 16(3): e0247963. https://doi.org/10.1371/journal.pone.0247963 PMid:33661993 PMCid:PMC7932532 Gao X., Wang X., Li S., Rahman M.S.U., Xu S., and Liu Y., 2023, Nanovaccines for advancing long-lasting immunity against infectious diseases, ACS Nano, 17(24): 24514-24538. https://doi.org/10.1021/acsnano.3c07741 PMid:38055649 Goff P., Hayashi T., Martínez-Gil L., Corr M., Crain B., Yao S., and Carson D.A., 2015, Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses, Journal of Virology, 89(6): 3221-3235. https://doi.org/10.1128/JVI.03337-14 PMid:25568203 PMCid:PMC4337541 Goodman A.G., Heinen P.P., Guerra S., Vijayan A., Sorzano C.O., Gómez C.E., and Esteban M., 2011, A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus, PloS One, 6(10): e25938. https://doi.org/10.1371/journal.pone.0025938 PMid:21998725 PMCid:PMC3187825 Howard L.M., Goll J.B., Jensen T.L., Hoek K.L., Prasad N., Gelber C.E., Levy S.E., Joyce S., Link A.J., Creech C.B., and Edwards K.M., 2019, AS03-adjuvanted H5N1 avian influenza vaccine modulates early innate immune signatures in human peripheral blood mononuclear cells, The Journal of Infectious Diseases, 219(11): 1786-1798. https://doi.org/10.1093/infdis/jiy721 PMid:30566602 PMCid:PMC6500554 Jang Y., and Seong B.L., 2014, Options and obstacles for designing a universal influenza vaccine, Viruses, 6(8): 3159-3180. https://doi.org/10.3390/v6083159 PMid:25196381 PMCid:PMC4147691

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==