JVR_2024v14n2

Journal of Vaccine Research 2024, Vol.14, No.2, 65-75 http://medscipublisher.com/index.php/jvr 74 Luchner M., Reinke S., and Milicic A., 2021, TLR agonists as vaccine adjuvants targeting cancer and infectious diseases, Pharmaceutics, 13(2): 142. https://doi.org/10.3390/pharmaceutics13020142 PMid:33499143 PMCid:PMC7911620 Matsumura N., Shiro R., and Tsunoda I., 2023, Critical evaluation on roles of macrophagic myofasciitis and aluminum adjuvants in HPV vaccine-induced adverse events, Cancer Science, 114(4): 1218-1228. https://doi.org/10.1111/cas.15714 PMid:36601818 PMCid:PMC10067403 Mohapatra A., Rajendrakumar S.K., Cherukula K., Park M.S., Padmanaban S., Vasukuty A., Mohanty A., Lee J., Bae W., and Park I.K., 2023, A sugar modified amphiphilic cationic nano-adjuvant ceased tumor immune suppression and rejuvenated peptide vaccine induced antitumor immunity in cervical cancer, Biomaterials Science, 11(5): 1853-1866. https://doi.org/10.1039/D2BM01715F PMid:36655902 Ni Q., Zhang F., Liu Y., Wang Z., Yu G., Liang B., Niu G., Su T., Zhu G., Lu G., Zhang L., and Chen X., 2020, A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer, Science Advances, 6(12): eaaw6071. https://doi.org/10.1126/sciadv.aaw6071 PMid:32206706 PMCid:PMC7080439 Nicoli F., Mantelli B., Gallerani E., Telatin V., Bonazzi I., Marconi P., Gavioli R., Gabrielli L., Lazzarotto T., Barzon L., Palù G., and Caputo A., 2020, HPV-specific systemic antibody responses and memory B cells are independently maintained up to 6 years and in a vaccine-specific manner following immunization with Cervarix and Gardasil in adolescent and young adult women in vaccination programs in Italy, Vaccines, 8(1): 26. https://doi.org/10.3390/vaccines8010026 PMid:31947611 PMCid:PMC7175219 Puth S., Verma V., Hong S.H., Tan W., Lee S.E., and Rhee J.H., 2022, An all-in-one adjuvanted therapeutic cancer vaccine targeting dendritic cell cytosol induces long-lived tumor suppression through NLRC4 inflammasome activation, Biomaterials, 286: 121542. https://doi.org/10.1016/j.biomaterials.2022.121542 PMid:35594837 Reed S.G., Bertholet S., Coler R.N., and Friede M., 2009, New horizons in adjuvants for vaccine development, Trends in Immunology, 30(1): 23-32. https://doi.org/10.1016/j.it.2008.09.006 PMid:19059004 Sun H., Hu W., Yan Y., Zhang Z., Chen Y., Yao X., Teng L., Wang X., Chai D., Zheng J., and Wang G., 2021, Using PAMPs and DAMPs as adjuvants in cancer vaccines. Human Vaccines and Immunotherapeutics, 17(12): 5546-5557. https://doi.org/10.1080/21645515.2021.1964316 PMid:34520322 PMCid:PMC8903972 Verma S.K., Mahajan P., Singh N.K., Gupta A., Aggarwal R., Rappuoli R., and Johri A.K., 2023, New-age vaccine adjuvants, their development, and future perspective, Frontiers in Immunology, 14: 1043109. https://doi.org/10.3389/fimmu.2023.1043109 PMid:36911719 PMCid:PMC9998920 Vermaelen K., 2019, Vaccine strategies to improve anti-cancer cellular immune responses, Frontiers in Immunology, 10: 8. https://doi.org/10.3389/fimmu.2019.00008 PMid:30723469 PMCid:PMC6349827 Yang A., Bai Y., Dong X., Ma T., Zhu D., Mei L., and Lv F., 2021, Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy, Acta Biomaterialia, 133: 257-267. https://doi.org/10.1016/j.actbio.2021.08.014 PMid:34407475 Yang R., Xu J., Xu L., Sun X., Chen Q., Zhao Y., Peng R., and Liu Z., 2018, Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination, ACS nano, 12(6): 5121-5129. https://doi.org/10.1021/acsnano.7b09041 PMid:29771487 Yasuda T., Nishiki K., Hiraki Y., Kato H., Iwama M., Shiraishi O., Yasuda A., Shinkai M., Kimura Y., Sukegawa Y., Chiba Y., Imano M., Takeda K., Satou T., Shiozaki H., and Nakamura Y., 2022, Phase II adjuvant cancer-specific vaccine therapy for esophageal cancer patients curatively resected after preoperative therapy with pathologically positive nodes; possible significance of tumor immune microenvironment in its clinical effects, Annals of Surgery, 275(1): e155-e162. https://doi.org/10.1097/SLA.0000000000003880 PMid:33055588 Yoshida S., Shime H., Matsumoto M., Kasahara M., and Seya T., 2019, Anti-oxidative amino acid L-ergothioneine modulates the tumor microenvironment to facilitate adjuvant vaccine immunotherapy, Frontiers in Immunology, 10: 671. https://doi.org/10.3389/fimmu.2019.00671 PMid:31019508 PMCid:PMC6458301

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==