JVR_2024v14n2

Journal of Vaccine Research 2024, Vol.14, No.2, 54-64 http://medscipublisher.com/index.php/jvr 64 Mullins L., Mason E., Winter K., and Sadarangani M., 2023, Vaccination is an integral strategy to combat antimicrobial resistance, PLOS Pathogens, 19(6): e1011379. https://doi.org/10.1371/journal.ppat.1011379 PMid:37319164 PMCid:PMC10270329 Morrison L., and Zembower T, R, (2020), Antimicrobial resistance, Gastrointestinal Endoscopy Clinics, 30(4): 619-635. https://doi.org/10.1016/j.giec.2020.06.004 PMid:32891221 Ozawa S., Chen H., Rao G., Eguale T., and Stringer A., 2021, Value of pneumococcal vaccination in controlling the development of antimicrobial resistance (AMR): case study using DREAMR in Ethiopia., Vaccine, 39(45): 6700-6711. https://doi.org/10.1016/j.vaccine.2021.04.024 PMid:34538697 Qamar M., Ahmad S., Fatima I., Ahmad F., Shahid F., Naz A., Abbasi S., Khan A., Mirza M., Ashfaq U., and Chen L., 2021, Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches, Computers in biology and medicine, 132: 104389. https://doi.org/10.1016/j.compbiomed.2021.104389 PMid:33866250 Rosini R., Nicchi S., Pizza M., and Rappuoli R., 2020, Vaccines against antimicrobial resistance, Frontiers in Immunology, 11: 1048. https://doi.org/10.3389/fimmu.2020.01048 PMid:32582169 PMCid:PMC7283535 Ruban H., and Struch S., 2021, Vaccination as a solution of the issue of resistance S, pneumoniae, 20: 83-92. https://doi.org/10.31631/2073-3046-2021-20-2-83-92 Saeed U., Insaf R., Piracha Z., Tariq M., Sohail A., Abbasi U., Rana M., Gilani S., Noor S., Noor E., Waheed Y., Wahid M., Najmi M., and Fazal I., 2023, Crisis averted: a world united against the menace of multiple drug-resistant superbugs -pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal, Frontiers in Microbiology, 14: 1270018. https://doi.org/10.3389/fmicb.2023.1270018 PMid:38098671 PMCid:PMC10720626 Siles M., Lugo A., and McConnell M., 2020, Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success., FEMS microbiology reviews, 45(3): fuaa054. https://doi.org/10.1093/femsre/fuaa054 PMid:33289833 Tagliabue A., and Rappuoli R., 2018, Changing priorities in vaccinology: antibiotic resistance moving to the top, Frontiers in Immunology, 9: 1068. https://doi.org/10.3389/fimmu.2018.01068 PMid:29910799 PMCid:PMC5992407 Talat A., and Khan A., 2021, Vaccines against antimicrobial resistance: a promising escape route for multidrug resistance., Pharmaceutical patent analyst, 10(2): 83-98. https://doi.org/10.4155/ppa-2020-0022 PMid:33829866 Tariq H., Batool S., Asif S., Ali M., and Abbasi B., 2022, Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases, Frontiers in Microbiology, 12: 790121. https://doi.org/10.3389/fmicb.2021.790121 PMid:35046918 PMCid:PMC8761975 Villegas G., Jauregui L., Moreno B., Nunez H., and Kannan S., 2021, Genesis of antibiotic resistance LXVIII: effective vaccination (Campaigns) decrease antibiotic consumption consequent antibiotic‐resistance (AR) pandemic(ARP) - The exception that proves the rule, The FASEB Journal, 35(S1): 02202. https://doi.org/10.1096/fasebj.2021.35.S1.02202

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==