International Journal of Molecular Medical Science, 2025, Vol.15, No.2, 89-97 http://medscipublisher.com/index.php/ijmms 96 Lee J.S., Kwon D.S., Lee K.R., Park J., Ha S., and Hong E., 2015, Mechanism of macrophage activation induced by polysaccharide fromCordyceps militaris culture broth, Carbohydrate Polymers, 120: 29-37. https://doi.org/10.1016/j.carbpol.2014.11.059 Liu X., Huang Y., Chen Y., and Cao Y., 2016, Partial structural characterization, as well as immunomodulatory and anti-aging activities of CP2-c2-s2 polysaccharide fromCordyceps militaris, RSC Advances, 6(106): 104094-104103. https://doi.org/10.1039/C6RA23612J Liu Y., Li Q.Z., Li L., and Zhou X., 2021, Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of OphioCordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and P13K/Akt signaling pathways, Journal of Ethnopharmacology, 275: 114130. https://doi.org/10.1016/j.jep.2021.114130 Liu Y., Yang J., Guo Z., Li Q., Zhang L., Zhao L., and Zhou X., 2024, Immunomodulatory effect of Cordyceps militaris polysaccharide on RAW 264.7 macrophages by regulating MAPK signaling pathways, Molecules, 29(14): 3408. https://doi.org/10.3390/molecules29143408 Luo X.P., Duan Y.Q., Yang W.Y., Zhang H.H., Li C.Z., and Zhang J.X., 2017, Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction fromCordyceps militaris, Carbohydrate Polymers, 157: 794-802. https://doi.org/10.1016/j.carbpol.2016.10.066 Miao M., Yu W.Q., Li Y., Sun Y., and Guo S., 2022, Structural elucidation and activities of Cordyceps militaris-derived polysaccharides:a review, Frontiers in Nutrition, 9: 898674. https://doi.org/10.3389/fnut.2022.898674 Qu S.L, Li S.S., Li D., and Zhao P., 2022, Metabolites and their bioactivities from the genus cordyceps, Microorganisms, 10(8): 1489. https://doi.org/10.3390/microorganisms10081489. Wan J., Zhu, Y., Jiang X., Wang F., Zhou Z., Wang J., Liu C., Wei Y., and Zhen O., 2023, Immunomodulation of RAW264.7 cells by CP80-1, a polysaccharide of Cordyceps cicadae, via Dectin-1/Syk/NF-κB signaling pathway, Food and Agricultural Immunology, 34(1): 2231172. https://doi.org/10.1080/09540105.2023.2231172 Wang J., Nie S., Cui S., Wang Z., Phillips A., Phillips G., Li, Y., and Xie M., 2017, Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis, Food Hydrocolloids, 67: 139-147. https://doi.org/10.1016/J.FOODHYD.2017.01.010 Wang M., Meng X., Yang R., Qin T., Wang X., Zhang K., Fei C., Li Y., Hu Y., and Xue F., 2012, Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice, Carbohydrate Polymers, 89(2): 461-466. https://doi.org/10.1016/j.carbpol.2012.03.029 Wang W., 2024, Studying the dynamic changes of the immune system through single-cell omics, International Journal of Molecular Medical Science, 14(1): 29-41. https://doi.org/10.5376/ijmms.2024.14.0005 Wang Y.N., Zeng T.T., Li H., Wang Y.D., Wang J.H., and Yuan H.B., 2023, Structural characterization and hypoglycemic function of polysaccharides from Cordyceps cicadae, Molecules, 28(2): 526. https://doi.org/10.3390/molecules28020526 Wang Z.M., Peng X., Lee K.L.D., Tang J.C., Cheung P.C.K., and Wu J.Y., 2011, Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1, Food Chemistry, 125: 637-643. https://doi.org/10.1016/J.FOODCHEM.2010.09.052 Wu D., Cheong K., Wang L., Lv G., Ju Y., Feng K., Zhao J., and Li S., 2014, Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC, Carbohydrate Polymers, 103: 100-109. https://doi.org/10.1016/j.carbpol.2013.12.034 Wu Y., Sun C., and Pan Y., 2005, Structural analysis of a neutral (1-->3),(1-->4)-beta-D-glucan from the mycelia of Cordyceps sinensis, Journal of Natural Products, 68(5): 812-814. https://doi.org/10.1021/NP0496035 Zhang G., Yin Q., Han T., Zhao Y., Su, J., Li, M., and Ling J., 2015, Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordyceps kyushuensis, Industrial Crops and Products, 69: 485-491. https://doi.org/10.1016/J.INDCROP.2015.03.006 Zhang J.X., Wen C.T., Duan Y.Q., Zhang H.H., and Ma H.L., 2019, Advance in Cordyceps militaris (Linn) link polysaccharides: Isolation, structure, and bioactivities: a review, International Journal of Biological Macromolecules, 132: 906-914. https://doi.org/10.1016/j.ijbiomac.2019.04.020 Zhang Y., Zeng Y., Cui Y., Liu H., Dong C., and Sun Y., 2020, Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide fromCordyceps militaris cultivated on hull-less barley, Carbohydrate Polymers, 235: 115969. https://doi.org/10.1016/j.carbpol.2020.115969 Zhan Q., Wang Q., Lin R., He P., Lai F., Zhang M., and Wu H., 2019, Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata michx fruit, International Journal of Biological Macromolecules, 145: 1080-1090. https://doi.org/10.1016/j.ijbiomac.2019.09.201
RkJQdWJsaXNoZXIy MjQ4ODYzNA==