IJMMS_2025v15n2

International Journal of Molecular Medical Science, 2025, Vol.15, No.2, 54-68 http://medscipublisher.com/index.php/ijmms 67 Jaffray J., Branchford B., Goldenberg N., Malvar J., Croteau S.E., Silvey M., Fargo J.H., Cooper J.D., Bakeer N., Sposto R., Ji L.Y., Zakai N.A., Faustino E.V.S., Stillings A., Krava E., Young G., and Mahajerin A., 2021, Development of a risk model for pediatric hospital-acquired thrombosis: a report from the Children's Hospital-Acquired Thrombosis Consortium, The Journal of Pediatrics, 228: 252-259. https://doi.org/10.1016/j.jpeds.2020.09.016 Jaffray J., Mahajerin A., Branchford B., Nguyen A.T.H., Faustino E.V.S., Silvey M., Croteau S.E., Fargo J.H., Cooper J.D., Bakeer N., Zakai N.A., Stillings A., Krava E., Amankwah E.K., Young G., and Goldenberg N.A., 2022, A new risk assessment model for hospital-acquired venous thromboembolism in critically ill children: a report from the Children's Hospital-Acquired Thrombosis Consortium, Pediatric Critical Care Medicine, 23(1): e1-e9. https://doi.org/10.1097/PCC.0000000000002826 Kerlin B.A., Stephens J.A., Hogan M.J., Smoyer W.E., and O'Brien S.H., 2015, Development of a pediatric-specific clinical probability tool for diagnosis of venous thromboembolism: a feasibility study, Pediatric Research, 77(3): 463-471. https://doi.org/10.1038/pr.2014.198 Kerris E.W., Sharron M., Zurakowski D., Staffa S.J., Yurasek G., and Diab Y., 2020, Hospital-associated venous thromboembolism in a pediatric cardiac ICU: a multivariable predictive algorithm to identify children at high risk, Pediatric Critical Care Medicine, 21(6): e362-e368. https://doi.org/10.1097/PCC.0000000000002293 Leung A.K., Wong A.H., and Hon K.L., 2024, Childhood obesity: an updated review, Current Pediatric Reviews, 20(1): 2-26. https://doi.org/10.2174/1573396318666220801093225 Makatsariya A., Bitsadze V., Khizroeva J., Vorobev A., Makatsariya N., Egorova E., Mischenko A., Mashkova T., and Antonova A., 2022, Neonatal thrombosis, The Journal of Maternal-Fetal & Neonatal Medicine, 35(6): 1169-1177. https://doi.org/10.1080/14767058.2020.1743668 Marquez A., Shabanova V., and Faustino E.V.S., 2016, Prediction of catheter-associated thrombosis in critically ill children, Pediatric Critical Care Medicine, 17(11): e521-e528. https://doi.org/10.1097/PCC.0000000000000958 Milford K., von Delft D., Majola N., and Cox S., 2020, Long-term vascular access in differently resourced settings: a review of indications, devices, techniques, and complications, Pediatric Surgery International, 36: 551-562. https://doi.org/10.1007/s00383-020-04640-0 Monagle P., Chan A.K., Goldenberg N.A., Ichord R.N., Journeycake J.M., Nowak-Göttl U., and Vesely S.K., 2012, Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis: American college of chest physicians evidence-based clinical practice guidelines, Chest, 141(2): e737S-e801S. https://doi.org/10.1378/chest.11-2308 O'Brien S.H., Stanek J.R., Witmer C.M., and Raffini L., 2022, The continued rise of venous thromboembolism across US children's hospitals, Pediatrics, 149(3): e2021054649. https://doi.org/10.1542/peds.2021-054649 Papillon S.C., Pennell C.P., Master S.A., Turner E.M., Arthur L.G., Grewal H., and Aronoff S.C., 2023, Derivation and validation of a machine learning algorithm for predicting venous thromboembolism in injured children, Journal of Pediatric Surgery, 58(6): 1200-1205. https://doi.org/10.1016/j.jpedsurg.2023.02.040 Rühle F., and Stoll M., 2018, Advances in predicting venous thromboembolism risk in children, British Journal of Haematology, 180(5): 654-665. https://doi.org/10.1111/bjh.15060 Sharathkumar A.A., Mahajerin A., Heidt L., Doerfer K., Heiny M., Vik T., Fallon R., and Rademaker A., 2012, Risk‐prediction tool for identifying hospitalized children with a predisposition for development of venous thromboembolism: Peds‐Clot clinical decision rule, Journal of Thrombosis and Haemostasis, 10(7): 1326-1334. https://doi.org/10.1111/j.1538-7836.2012.04779.x Sheng Y., Wu T., Fan C., Hao H., and Gao W., 2022, Factors influencing the optimal selection of central venous access devices: a qualitative study of health care team members' perspectives, International Journal of Nursing Sciences, 9(4): 445-452. https://doi.org/10.1016/j.ijnss.2022.09.006 Spavor M., Halton J., Dietrich K., Israels S., Shereck E., Yong J., Yasui Y., and Mitchell L.G., 2016, Age at cancer diagnosis, non-O blood group and asparaginase therapy are independently associated with deep venous thrombosis in pediatric oncology patients: a risk model, Thrombosis Research, 144: 27-31. https://doi.org/10.1016/j.thromres.2016.05.015 Srivaths L., and Dietrich J.E., 2016, Prothrombotic risk factors and preventive strategies in adolescent venous thromboembolism, Clinical and Applied Thrombosis/Hemostasis, 22(6): 512-519. https://doi.org/10.1177/1076029616631428 Tan Z.Y., and Zhi K.K., 2023, Current status and progress in the diagnosis and treatment of venous thromboembolism in children, Journal of Vascular and Endovascular Surgery, 9(4): 454-459. Tiratrakoonseree T., Charoenpichitnun S., Natesirinilkul R., Songthawee N., Komvilaisak P., Pongphitcha P., Vaewpanich J., and Sirachainan N., 2024, Clinical prediction tool to identify children at risk of pulmonary embolism, Thrombosis Research, 234: 151-157. https://doi.org/10.1016/j.thromres.2024.01.006

RkJQdWJsaXNoZXIy MjQ4ODYzNA==