IJMMS_2025v15n1

International Journal of Molecular Medical Science, 2025, Vol.15, No.1, 42-53 http://medscipublisher.com/index.php/ijmms 51 Huang W., Xu R., Gao N., Wu X., and Wen C., 2022, Case report: family curse: an SCN5A Mutation, c.611C>A, p.A204E associated with a family history of dilated cardiomyopathy and arrhythmia, Frontiers in Cardiovascular Medicine, 9: 822150. https://doi.org/10.3389/fcvm.2022.822150 Lip S., and Padmanabhan S., 2020, Genomics of blood pressure and hypertension: extending the mosaic theory toward stratification, The Canadian Journal of Cardiology, 36: 694-705. https://doi.org/10.1016/j.cjca.2020.03.001 Liu W., Wei Z., Zhang Y., Liu Y., Bai R., Ma C., Yang J., and Sun D., 2021, Identification of three novel pathogenic mutations in sarcomere genes associated with familial hypertrophic cardiomyopathy based on multi-omics study, Clinica Chimica Acta, 520: 43-52. https://doi.org/10.1016/j.cca.2021.05.034 Louis-dit-Picard H., Barc J., Trujillano D., Miserey-Lenkei S., Bouatia-Naji N., Pylypenko O., Beaurain G., Bonnefond A., Sand O., Simian C., Vidal-Petiot E., Soukaseum C., Mandet C., Broux F., Chabre O., Delahousse M., Esnault V., Fiquet B., Houillier P., Bagnis C., Koenig J., Konrad M., Landais P., Mourani C., Niaudet P., Probst V., Thauvin C., Unwin R., Soroka S., Ehret G., Ossowski S., Caulfield M., Bruneval P., Estivill X., Froguel P., Hadchouel J., Schott J., and Jeunemaître X., 2012, KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron, Nature Genetics, 44: 456-460. https://doi.org/10.1038/ng.2218 Lu X., Wang L., Lin X., Huang J., Gu C., He M., Shen H., He J., Zhu J., Li H., Hixson J., Wu T., Dai J., Lu L., Shen C., Chen S., He L., Mo Z., Hao Y., Mo X., Yang X., Li J., Cao J., Chen J., Fan Z., Li Y., Zhao L., Li H., Lu F., Yao C., Yu L., Xu L., Mu J., Wu X., Deng Y., Hu D., Hu D., Zhang W., Ji X., Guo D., Guo Z., Zhou Z., Yang Z., Wang R., Yang J., Zhou X., Yan W., Sun N., Gao P., and Gu D., 2015, Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension, Human Molecular Genetics, 24(3): 865-874. https://doi.org/10.1093/hmg/ddu478 Mademont-Soler I., Matés J., Yotti R., Espinosa M., Pérez-Serra A., Fernandez-Avila A., Coll M., Méndez I., Iglesias A., Olmo B., Riuró H., Cuenca S., Allegue C., Campuzano Ó., Picó F., Ferrer-Costa C., Álvarez P., Castillo S., García-Pavía P., Gonzalez-López E., Padrón-Barthe L., Bustamante A., Darnaude M., Gonzalez-Hevia J., Brugada J., Fernandez‐Avilés F., and Brugada R., 2017, Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy, PLoS One, 12(8): e0181465. https://doi.org/10.1371/journal.pone.0181465 Maeoka Y., Cornelius R., and McCormick J., 2023, Cullin 3 and blood pressure regulation: insights from familial hyperkalemic hypertension, Hypertension, 80: 912-923. https://doi.org/10.1161/HYPERTENSIONAHA.123.20525 Makiyama T., Akao M., Shizuta S., Doi T., Nishiyama K., Oka Y., Ohno S., Nishio Y., Tsuji K., Itoh H., Kimura T., Kita T., and Horie M., 2008, A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation, Journal of the American College of Cardiology, 52(16): 1326-1334. https://doi.org/10.1016/j.jacc.2008.07.013 Manning E., Tardiff J., and Schwartz S., 2012, Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT, Journal of Molecular Biology, 421(1): 54-66. https://doi.org/10.1016/j.jmb.2012.05.008 Maron B., Maron M., and Semsarian C., 2012, Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives, Journal of the American College of Cardiology, 60(8): 705-715. https://doi.org/10.1016/j.jacc.2012.02.068 Martin R., Latten M., Hart P., Murray H., Bailie D., Crockard M., Lamont J., Fitzgerald P., and Graham C., 2016, Genetic diagnosis of familial hypercholesterolaemia using a rapid biochip array assay for 40 common LDLR, APOB and PCSK9 mutations, Atherosclerosis, 254: 8-13. https://doi.org/10.1016/j.atherosclerosis.2016.09.061 Mason J., 2024, High-throughput sequencing technology: a new chapter in epigenetics and disease research, Cancer Genetics and Epigenetics, 12(1): 47-54. https://doi.org/10.5376/cge.2024.12.0006 McNair W., Sinagra G., Taylor M., Lenarda A., Ferguson D., Salcedo E., Slavov D., Zhu X., Caldwell J., and Mestroni L., 2011, SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism, Journal of the American College of Cardiology, 57(21): 2160-2168. https://doi.org/10.1016/j.jacc.2010.09.084 Newman J., Trembath R., Morse J., Grunig E., Loyd J., Adnot S., Coccolo F., Ventura C., Phillips J., Knowles J., Janssen B., Eickelberg O., Eddahibi S., Herve P., Nichols W., and Elliott G., 2004, Genetic basis of pulmonary arterial hypertension: current understanding and future directions, Journal of the American College of Cardiology, 43(12 Suppl S): 33S-39S. https://doi.org/10.1016/J.JACC.2004.02.028 Nicol R., Frey N., and Olson E., 2000, From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease, Annual Review of Genomics and Human Genetics, 1: 179-223. https://doi.org/10.1146/ANNUREV.GENOM.1.1.179 Nomura A., Tada H., Okada H., Nohara A., Ishikawa H., Yoshimura K., and Kawashiri M., 2018, Impact of genetic testing on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia (GenTLe-FH): a randomised waiting list controlled open-label study protocol, BMJ Open, 8(12): e023636. https://doi.org/10.1136/bmjopen-2018-023636

RkJQdWJsaXNoZXIy MjQ4ODYzNA==