IJMMS_2025v15n1

International Journal of Molecular Medical Science, 2025, Vol.15, No.1, 20-32 http://medscipublisher.com/index.php/ijmms 32 Rosen B.H., Chanson M., Gawenis L.R., Liu J., Sofoluwe A., Zoso A., and Engelhardt J.F., 2017, Animal and model systems for studying cystic fibrosis, Journal of Cystic Fibrosis, 17(2S): S28-S34. https://doi.org/10.1016/j.jcf.2017.09.001 Scholte B., Horati H., Veltman M., Vreeken R., Garratt L., Tiddens H., Janssens H., and Stick S., 2019, Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease, Journal of Cystic Fibrosis, 18(6): 781-789. https://doi.org/10.1016/j.jcf.2019.04.011 Signorelli P., Pivari F., Barcella M., Merelli I., Zulueta A., Cas M., Ghidoni R., Caretti A., Paroni R., and Mingione A., 2021, Myriocin modulates the altered lipid metabolism and storage in cystic fibrosis, Cellular Signalling, 81: 109928. https://doi.org/10.1016/j.cellsig.2021.109928 Southern K.W., Murphy J., Sinha I., and Nevitt S., 2020, Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del), The Cochrane Database of Systematic Reviews, 12(12): CD010966. https://doi.org/10.1002/14651858.CD010966.pub3 Tam R., Van Dorst J., McKay I., Coffey M., and Ooi C., 2022, Intestinal inflammation and alterations in the gut microbiota in cystic fibrosis: a review of the current evidence, pathophysiology and future directions, Journal of Clinical Medicine, 11(3): 649. https://doi.org/10.3390/jcm11030649 Tamanini A., Fabbri E., Jakova T., Gasparello J., Manicardi A., Corradini R., Finotti A., Borgatti M., Lampronti I., Munari S., Dechecchi M.C., Cabrini G., and Gambari R., 2021, A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1, Biomedicines, 9(2): 117. https://doi.org/10.3390/biomedicines9020117 Ung C., Onoufriadis A., Parsons M., McGrath J.A., and Shaw T., 2021, Metabolic perturbations in fibrosis disease, The International Journal of Biochemistry and Cell Biology, 139: 106073. https://doi.org/10.1016/j.biocel.2021.106073 Veit G., Avramescu R., Chiang A., Houck S., Cai Z., Peters K., Hong J., Pollard H., Guggino W., Balch W., Skach W., Cutting G., Frizzell R., Sheppard D., Cyr D., Sorscher E., Brodsky J., and Lukács G., 2016, From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations, Molecular Biology of the Cell, 27: 424-433. https://doi.org/10.1091/mbc.E14-04-0935 Veltman M., De Sanctis J., Stolarczyk M., Klymiuk N., Bähr A., Brouwer R., Oole E., Shah J., Oždian T., Liao J., Martini C., Radzioch D., Hanrahan J., and Scholte B.J., 2021, CFTR correctors and antioxidants partially normalize lipid imbalance but not abnormal basal inflammatory cytokine profile in CF bronchial epithelial cells, Frontiers in Physiology, 12: 619442. https://doi.org/10.3389/fphys.2021.619442 Wang Y.S., Zhao J., Cai Y., and Ballard H., 2020, Cystic fibrosis transmembrane conductance regulator-dependent bicarbonate entry controls rat cardiomyocyte ATP release via pannexin1 through mitochondrial signalling and caspase activation, Acta Physiologica, 230(1): e13495. https://doi.org/10.1111/apha.13495 Worgall T., 2009, Lipid metabolism in cystic fibrosis, Current Opinion in Clinical Nutrition and Metabolic Care, 12: 105-109. https://doi.org/10.1097/MCO.0b013e32832595b7 Wu H., Zhu M., Xiong X., Wei J., Zhuo K., and Cheng D., 2018, Efficacy and safety of CFTR corrector and potentiator combination therapy in patients with cystic fibrosis for the F508del-CFTR homozygous mutation: a systematic review and meta-analysis, Advances in Therapy, 36: 451-461. https://doi.org/10.1007/s12325-018-0860-4 Zhou J.Y., 2024, Network biology reveals new strategies for understanding the relationship between protein function and disease, Computational Molecular Biology, 14(1): 28-35. https://doi.org/10.5376/cmb.2024.14.0004

RkJQdWJsaXNoZXIy MjQ4ODYzNA==