International Journal of Molecular Medical Science, 2025, Vol.15, No.1, 20-32 http://medscipublisher.com/index.php/ijmms 31 Kramer E., and Clancy J., 2018, TGFβ as a therapeutic target in cystic fibrosis, Expert Opinion on Therapeutic Targets, 22(2): 177-189. https://doi.org/10.1080/14728222.2018.1406922 Lara-Reyna S., Scambler T., Holbrook J., Wong C., Jarosz-Griffiths H., Martinon F., Savic S., Peckham D., and McDermott M., 2019, Metabolic reprograming of cystic fibrosis macrophages via the IRE1α arm of the unfolded protein response results in exacerbated inflammation, Frontiers in Immunology, 10: 1789. https://doi.org/10.3389/fimmu.2019.01789 Leenaars C.H., Vries R., Reijmer J., Holthaus D., Visser D., Heming A., Elzinga J., Kempkes R., Beumer W., Punt C., Meijboom F., and Ritskes-Hoitinga M.F., 2021, Animal models for cystic fibrosis: a systematic search and mapping review of the literature, part 2: nongenetic models, Laboratory Animals, 55(4): 307-316. https://doi.org/10.1177/0023677221990688 Liu F., Zhang Z., Csanády L., Gadsby D. C., and Cheng J., 2017, Molecular structure of the human CFTR ion channel, Cell, 169 (1): 85-95 https://doi.org/10.1016/j.cell.2017.02.024 Lopes-Pacheco M., 2020, CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine, Frontiers in Pharmacology, 10: 1662. https://doi.org/10.3389/fphar.2019.01662 Lopes-Pacheco M., 2016, CFTR Modulators: shedding light on precision medicine for cystic fibrosis, Front Pharmacol., 7:275. https://doi.org/10.3389/fphar.2016.00275 Mason J., 2024, High-throughput sequencing technology: a new chapter in epigenetics and disease research, Cancer Genetics and Epigenetics, 12(1): 47-54 http://doi.org/10.5376/cge.2024.12.0006 Maiuri L., Raia, V., Piacentini M., Tosco A., Villella V., and Kroemer G., 2019, Cystic fibrosis transmembrane conductance regulator (CFTR) and autophagy: hereditary defects in cystic fibrosis versus gluten-mediated inhibition in celiac disease, Oncotarget, 10: 4492-4500. https://doi.org/10.18632/oncotarget.27037 Mall M.A., Mayer-Hamblett N., and Rowe S., 2019, Cystic fibrosis: emergence of highly effective targeted therapeutics and potential clinical implications, American Journal of Respiratory and Critical Care Medicine, 201(10): 1193-1208. https://doi.org/10.1164/rccm.201910-1943SO McCarron A., Cmielewski P., Reyne N., McIntyre C., Finnie J., Craig F., Rout-Pitt N., Delhove J., Schjenken J.E., Chan H., Boog B., Knight E., Gilmore R., O’Neal W., Boucher R., Parsons D., and Donnelley M., 2020, Phenotypic characterization and comparison of Phe508del and cystic fibrosis transmembrane conductance regulator (CFTR) knockout rat models of cystic fibrosis generated by CRISPR/Cas9 gene editing, The American Journal of Pathology, 190(5): 977-993. https://doi.org/10.1016/j.ajpath.2020.01.009 Mingione A., Cas D., Bonezzi F., Caretti A., Piccoli M., Anastasia L., Ghidoni R., Paroni R., and Signorelli P., 2020b, Inhibition of sphingolipid synthesis as a phenotype-modifying therapy in cystic fibrosis, Cellular Physiology and Biochemistry, 54(1): 110-125. https://doi.org/10.33594/000000208 Mingione A., Ottaviano E., Barcella M., Merelli I., Rosso L., Armeni T., Cirilli N., Ghidoni R., Borghi E., and Signorelli P., 2020a, Cystic fibrosis defective response to infection involves autophagy and lipid metabolism, Cells, 9(8): 1845. https://doi.org/10.3390/cells9081845 Mitri C., Xu Z., Bardin P., Corvol H., Touqui L., and Tabary O., 2020, Novel anti-inflammatory approaches for cystic fibrosis lung disease: identification of molecular targets and design of innovative therapies, Frontiers in Pharmacology, 11: 1096. https://doi.org/10.3389/fphar.2020.01096 Moliteo E., Sciacca M., Palmeri A., Papale M., Manti S., Parisi G., and Leonardi S., 2022, Cystic fibrosis and oxidative stress: the role of CFTR, Molecules, 27(16): 5324. https://doi.org/10.3390/molecules27165324 Muhlebach M., and Sha W., 2015, Lessons learned from metabolomics in cystic fibrosis, Molecular and Cellular Pediatrics, 2: 1-7. https://doi.org/10.1186/s40348-015-0020-8 Ntimbane T., Comte B., Mailhot G., Berthiaume Y., Poitout V., Prentki M., Rabasa‐Lhoret R., and Levy E., 2009, Cystic fibrosis-related diabetes: from CFTR dysfunction to oxidative stress, The Clinical Biochemist, Reviews, 30(4): 153-177. O’Neal W., and Knowles M., 2018, Cystic fibrosis disease modifiers: complex genetics defines the phenotypic diversity in a monogenic disease, Annual Review of Genomics and Human Genetics, 19: 201-222. https://doi.org/10.1146/annurev-genom-083117-021329 Papi C., Gasparello J., Zurlo M., Manicardi A., Corradini R., Cabrini G., Gambari R., and Finotti A., 2022, Combined treatment of bronchial epithelial Calu-3 cells with peptide nucleic acids targeting miR-145-5p and miR-101-3p: synergistic enhancement of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, International Journal of Molecular Sciences, 23(16): 9348. https://doi.org/10.3390/ijms23169348 Podgórski R., Sumińska M., Rachel M., Fichna M., Fichna P., and Mazur A., 2022, Alteration in glucocorticoids secretion and metabolism in patients affected by cystic fibrosis, Frontiers in Endocrinology, 13: 1074209. https://doi.org/10.3389/fendo.2022.1074209 Ramachandran S., Osterhaus S., Parekh K., Jacobi A., Behlke M., and McCray P., 2016, SYVN1, NEDD8, and FBXO2 proteins regulate ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) ubiquitin-mediated proteasomal degradation, The Journal of Biological Chemistry, 291: 25489-25504. https://doi.org/10.1074/jbc.M116.754283
RkJQdWJsaXNoZXIy MjQ4ODYzNA==