IJMMS_2025v15n1

International Journal of Molecular Medical Science, 2025, Vol.15, No.1, 20-32 http://medscipublisher.com/index.php/ijmms 30 Cantin A., White T., Cross C., Forman H., Sokol R., and Borowitz D., 2007, Antioxidants in cystic fibrosis, conclusions from the CF antioxidant workshop, bethesda, maryland, November 11-12, 2003, Free Radical Biology and Medicine, 42(1): 15-31. https://doi.org/10.1016/J.FREERADBIOMED.2006.09.022 Carmo T., Soares V., Wruck J., Anjos F., De Resende E Silva D., De Oliveira Maciel S., and Bagatini M., 2021, Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target, Inflammation Research, 70: 633-649. https://doi.org/10.1007/s00011-021-01464-z Carson M., Travis S., and Welsh M., 1995, The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity, The Journal of Biological Chemistry, 270: 1711-1717. https://doi.org/10.1074/JBC.270.4.1711 Causer A.J., Shute J., Cummings M., Shepherd A., Gruet M., Costello J., Bailey S., Lindley M., Pearson C., Connett G., Allenby M., Carroll M., Daniels T., and Saynor Z., 2020, Circulating biomarkers of antioxidant status and oxidative stress in people with cystic fibrosis: a systematic review and meta-analysis, Redox Biology, 32: 101436. https://doi.org/10.1016/j.redox.2020.101436 Checa J., Martinez-Gonzalez I., Maqueda M., Mosquera J., and Aran J.M., 2021, Genome-wide RNAi screening identifies novel pathways/genes involved in oxidative stress and repurposable drugs to preserve cystic fibrosis airway epithelial cell integrity, Antioxidants, 10(12): 1936. https://doi.org/10.3390/antiox10121936 Costantini C., Puccetti M., Pariano M., Renga G., Stincardini C., D’Onofrio F., Bellet M., Cellini B., Giovagnoli S., and Romani L., 2020, Selectively targeting key inflammatory pathways in cystic fibrosis, European Journal of Medicinal Chemistry, 206: 112717. https://doi.org/10.1016/j.ejmech.2020.112717 Collins F.S., 1992, Cystic fibrosis: molecular biology and therapeutic implications, Science, 256(5058): 774-779. https://doi.org/10.1126/science.1375392 Di Pietro C., Öz H., Murray T., and Bruscia E., 2020, Targeting the heme Oxygenase 1/carbon monoxide pathway to resolve lung hyper-inflammation and restore a regulated immune response in cystic fibrosis, Frontiers in Pharmacology, 11: 1059. https://doi.org/10.3389/fphar.2020.01059 Eiserich J., Yang J., Morrissey B., Hammock B., and Cross C., 2012, Omics approaches in cystic fibrosis research: a focus on oxylipin profiling in airway secretions, Annals of the New York Academy of Sciences, 1259(1): 1-9. https://doi.org/10.1111/j.1749-6632.2012.06580.x Esther C., Coakley R., Henderson A., Zhou Y., Wright F., and Boucher R., 2015, Metabolomic evaluation of neutrophilic airway inflammation in cystic fibrosis, Chest, 148(2): 507-515. https://doi.org/10.1378/chest.14-1800 Fanen P., Wohlhuter‐Haddad A., and Hinzpeter A., 2014, Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies, The International Journal of Biochemistry and Cell Biology, 52: 94-102. https://doi.org/10.1016/j.biocel.2014.02.023 Feng L.X., Chen X., Huang Y., Zhang X., Zheng S., and Xie N., 2023, Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies, Frontiers in Pharmacology, 14: 1243675. https://doi.org/10.3389/fphar.2023.1243675 Galli F., Battistoni A., Gambari R., Pompella A., Bragonzi A., Pilolli F., Iuliano L., Piroddi M., Dechecchi M., and Cabrini G., 2012, Oxidative stress and antioxidant therapy in cystic fibrosis, Biochimica Et Biophysica Acta, 1822(5): 690-713. https://doi.org/10.1016/j.bbadis.2011.12.012 Ghigo A., Prono G., Riccardi E., and De Rose V., 2021, Dysfunctional inflammation in cystic fibrosis airways: from mechanisms to novel therapeutic approaches, International Journal of Molecular Sciences, 22(4): 1952. https://doi.org/10.3390/ijms22041952 Hanrahan J., Sato Y., Carlile G., Jansen G., Young J., and Thomas D., 2019, Cystic fibrosis: proteostatic correctors of CFTR trafficking and alternative therapeutic targets, Expert Opinion on Therapeutic Targets, 23: 711-724. https://doi.org/10.1080/14728222.2019.1628948 Hector A., Griese M., and Hartl D., 2014, Oxidative stress in cystic fibrosis lung disease: an early event, but worth targeting, European Respiratory Journal, 44: 17-19. https://doi.org/10.1183/09031936.00038114 Heneghan M., Southern K., Murphy J., Sinha I., and Nevitt S., 2023, Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del), The Cochrane Database of Systematic Reviews, 11(11): CD010966. https://doi.org/10.1002/14651858.CD010966.pub4 Hewson C.K., Capraro A., Wong S., Pandzic E., Zhong L., Fernando B., Awatade N., Hart-Smith G., Whan R., Thomas S., Jaffe A., Bridge W., and Waters S., 2020, Novel antioxidant therapy with the immediate precursor to glutathione, γ-glutamylcysteine (GGC), ameliorates LPS-induced cellular stress in in vitro 3D-differentiated airway model from primary cystic fibrosis human bronchial cells, Antioxidants, 9(12): 1204. https://doi.org/10.3390/antiox9121204 Hodos R.A., Strub M.D., Ramachandran S., Li L., McCray P.B., and Dudley J.T., 2020, Integrative genomic meta-analysis reveals novel molecular insights into cystic fibrosis and ΔF508-CFTR rescue, Scientific Reports, 10(1): 20553. https://doi.org/10.1038/s41598-020-76347-0

RkJQdWJsaXNoZXIy MjQ4ODYzNA==