IJMMS_2024v14n5

International Journal of Molecular Medical Science, 2024, Vol.14, No.5, 305-314 http://medscipublisher.com/index.php/ijmms 313 Awad M., Liu S., Rybkin I., Arbour K., Dilly J., Zhu V., Johnson M., Heist R., Patil T., Riely G., Jacobson J., Yang X., Persky N., Root D., Lowder K., Feng H., Zhang S., Haigis K., Hung Y., Sholl L., Wolpin B., Wiese J., Christiansen J., Lee J., Schrock A., Lim L., Garg K., Li M., Engstrom L., Waters L., Lawson J., Olson P., Lito P., Ou S., Christensen J., Jänne P., and Aguirre A., 2021, Acquired resistance to KRASG12C inhibition in cancer, The New England Journal of Medicine, 384(25): 2382-2393. https://doi.org/10.1056/NEJMoa2105281 Bang D., Wilson W., Ryan M., Yeh J., and Baldwin A., 2013, GSK-3α promotes oncogenic KRAS function in pancreatic cancer via TAK1-TAB stabilization and regulation of noncanonical NF-κB, Cancer Discovery, 3(6): 690-703. https://doi.org/10.1158/2159-8290.CD-12-0541 Bannoura S., Uddin M., Nagasaka M., Fazili F., Al-Hallak M., Philip P., El-Rayes B., and Azmi A., 2021, Targeting KRAS in pancreatic cancer: new drugs on the horizon, Cancer and Metastasis Reviews, 40: 819-835. https://doi.org/10.1007/s10555-021-09990-2 Bournet B., Buscail C., Muscari F., Cordelier P., and Buscail L., 2016, Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities, EuropeanJournal of Cancer, 54: 75-83. https://doi.org/10.1016/j.ejca.2015.11.012 Bryant K., Mancias J., Kimmelman A., and Der C., 2014, KRAS: feeding pancreatic cancer proliferation, Trends in Biochemical Sciences, 39(2): 91-100. https://doi.org/10.1016/j.tibs.2013.12.004 Brychta N., Krahn T., and Ahsen O., 2016, Detection of KRAS mutations in circulating tumor DNA by digital PCR in early stages of pancreatic cancer, Clinical Chemistry, 62(11): 1482-1491. https://doi.org/10.1373/CLINCHEM.2016.257469 Buscail L., Bournet B., and Cordelier P., 2020, Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer, Nature Reviews Gastroenterology & Hepatology, 17: 153-168. https://doi.org/10.1038/s41575-019-0245-4 Chen H., Raben D., Schefter T., Kane M., McCarter M., Olsen C., McCoy K., Eckhardt S., and Gumerlock P., 2006, KRAS mutation analysis in patients (pts) with locally advanced pancreatic cancer (LAPC) treated with gefitinib and chemoradiation therapy (CT-RT) in a phase I trial, Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 24 (18): 4106. https://doi.org/10.1200/JCO.2006.24.18_SUPPL.4106 Collins M., Bednar F., Zhang Y., Brisset J., Galban S., Galbán C., Rakshit S., Flannagan K., Adsay N., and Magliano M., 2012, Oncogenic kras is required for both the initiation and maintenance of pancreatic cancer in mice, The Journal of Clinical Investigation, 122(2): 639-653. https://doi.org/10.1172/JCI59227 Cowzer D., Zameer M., Conroy M., Kolch W., and Duffy A., 2022, Targeting KRAS in pancreatic cancer, Journal of Personalized Medicine, 12(11): 1870. https://doi.org/10.3390/jpm12111870 Hamidi H., Finn R., Anderson L., Lu M., Fejzo M., Ginther C., Linnartz R., and Zubel A., 2013, Abstract 936: KRAS mutational subtypes and copy number variations are predictive of response of human pancreatic cancer cell lines to MEK162in vitro, Cancer Research, 73: 936. https://doi.org/10.1158/1538-7445.AM2013-936 Hashimoto S., Furukawa S., Hashimoto A., Tsutaho A., Fukao A., Sakamura Y., Parajuli G., Onodera Y., Otsuka Y., Handa H., Oikawa T., Hata S., Nishikawa Y., Mizukami Y., Kodama Y., Murakami M., Fujiwara T., Hirano S., and Sabe H., 2019, ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer, Proceedings of the National Academy of Sciences of the United States of America, 116: 17450-17459. https://doi.org/10.1073/pnas.1901765116 Hu Q., Kanwal F., Lyu W., Zhang J., Liu X., Qin K., and Shen F., 2022, Multiplex digital polymerase chain reaction on a droplet array slipchip for analysis of KRAS mutations in pancreatic cancer, ACS Sensors, 8(1): 114-121. https://doi.org/10.1021/acssensors.2c01776 Humpton T., Alagesan B., DeNicola G., Lu D., Yordanov G., Leonhardt C., Yao M., Alagesan P., Zaatari M., Park Y., Skepper J., Macleod K., Pérez-Mancera P., Murphy M., Evan G., Vousden K., and Tuveson D., 2019, Oncogenic Kras induces Nix-mediated mitophagy to promote pancreatic cancer, Cancer Discovery, 9(9): 1268-1287. https://doi.org/10.1158/2159-8290.CD-18-1409 Hunter J., Manandhar A., Carrasco M., Gurbani D., Gondi S., and Westover K., 2015, Biochemical and structural analysis of common cancer-associated KRAS mutations, Molecular Cancer Research, 13: 1325-1335. https://doi.org/10.1158/1541-7786.MCR-15-0203 Kato H., Ellis H., and Bardeesy N., 2023, KRAS wild-type pancreatic cancer: decoding genomics, unlocking therapeutic potential, Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 29(22): 4527-4529. https://doi.org/10.1158/1078-0432.CCR-23-2221 Kim M., Li X., Deng J., Zhang Y., Dai B., Allton K., Hughes T., Siangco C., Augustine J., Kang Y., McDaniel J., Xiong S., Koay E., McAllister F., Bristow C., Heffernan T., Maitra A., Liu B., Barton M., Wasylishen A., Fleming J., and Lozano G., 2021, Oncogenic KRAS recruits an expansive transcriptional network through mutant p53 to drive pancreatic cancer metastasis, Cancer Discovery, 11(8): 2094-2111. https://doi.org/10.1158/2159-8290.CD-20-1228

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==