International Journal of Molecular Medical Science, 2024, Vol.14, No.5, 274-292 http://medscipublisher.com/index.php/ijmms 292 Tomczak K., Czerwińska P., and Wiznerowicz M., 2015, The cancer genome atlas (TCGA): an immeasurable source of knowledge, Contemp Oncol (Pozn), 19(1a): A68-A77. https://doi.org/10.5114/wo.2014.47136 Tong D., Tian Y., Zhou T., Ye Q., Li J., Ding K., and Li J., 2020a, Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data, BMC Medical Informatics and Decision Making, 20(1): 22. https://doi.org/10.1186/s12911-020-1043-1 Tong L., Mitchel J., Chatlin K., and Wang M., 2020b, Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis, BMC Medical Informatics and Decision Making, 20(1): 225. https://doi.org/10.1186/s12911-020-01225-8 Tong L., Wu H., and Wang M.D., 2021, Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer, Methods, 189: 74-85. https://doi.org/10.1016/j.ymeth.2020.07.008 Triff K., McLean M., Konganti K., Pang J., Callaway E., Zhou B., Ivanov I., and Chapkin R., 2017, Assessment of histone tail modifications and transcriptional profiling during colon cancer progression reveals a global decrease in H3K4me3 activity, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(6): 1392-1402. https://doi.org/10.1016/j.bbadis.2017.03.009 Vlachavas E., Bohn J., Ückert F., and Nurnberg S., 2021, A detailed catalogue of multi-omics methodologies for identification of putative biomarkers and causal molecular networks in translational cancer research, International Journal of Molecular Sciences, 22(6): 2822. https://doi.org/10.3390/ijms22062822 Wang B., Mezlini A., Demir F., Fiume M., Tu Z., Brudno M., Haibe-Kains B., and Goldenberg A., 2014, Similarity network fusion for aggregating data types on a genomic scale, Nature Methods, 11(3): 333-337. https://doi.org/10.1038/nmeth.2810 Wang H., Zheng H., Wang J., Wang C., and Wu F., 2016, Integrating omic data with a multiplex network-based approach for the identification of cancer subtypes, IEEE Transactions on Nanobioscience, 15(4): 335-342. https://doi.org/10.1109/TNB.2016.2556640 Xiao J., Leng A., Zhang Y., Wen Z., He J., and Ye G., 2019, CUEDC2: multifunctional roles in carcinogenesis, Frontiers in Bioscience (Landmark Ed), 24(5): 935-946. https://doi.org/10.2741/4759 Xu A., Chen J., Peng H., Han G., and Cai H., 2019, Simultaneous interrogation of cancer omics to identify subtypes with significant clinical differences, Frontiers in Genetics, 10: 236. https://doi.org/10.3389/fgene.2019.00236 Xu Z., Omar M., Benedetti E., Rosenthal J., Umeton R., Krumsiek J., Pomerantz M., Imada E., Loda M., and Marchionni L., 2022, Multi-omics biomarkers aid prostate cancer prognostication, bioRxiv, 2022-09. https://doi.org/10.1101/2022.09.20.508244 Yang H., Jin W., Liu H., Wang X., Wu J., Gan D., Cui C., Han Y., Han C., and Wang Z., 2020, A novel prognostic model based on multi-omics features predicts the prognosis of colon cancer patients, Molecular Genetics & Genomic Medicine, 8(7): e1255. https://doi.org/10.1002/mgg3.1255 Yang Y., Tian S., Qiu Y., Zhao P., and Zou Q., 2022, MDICC: novel method for multi-omics data integration and cancer subtype identification, Briefings in Bioinformatics, 23(3): bbac132. https://doi.org/10.1093/bib/bbac132 Yin Z., Yan X., Wang Q., Deng Z., Tang K., Cao Z., and Qiu T., 2020, Detecting prognosis risk biomarkers for colon cancer through multi-omics-based prognostic analysis and target regulation simulation modeling, Frontiers in Genetics, 11: 524. https://doi.org/10.3389/fgene.2020.00524 Zhao N., Guo M., Wang K., Zhang C., and Liu X., 2020, Identification of pan-cancer prognostic biomarkers through integration of multi-omics data, Frontiers in Bioengineering and Biotechnology, 8: 268. https://doi.org/10.3389/fbioe.2020.00268 Zhu B., Song N., Shen R., Arora A., Machiela M., Song L., Landi M., Ghosh D., Chatterjee N., Baladandayuthapani V., and Zhao H., 2017, Integrating clinical and multiple omics data for prognostic assessment across human cancers, Scientific Reports, 7(1): 16954. https://doi.org/10.1038/s41598-017-17031-8
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==