IJMMS_2024v14n5

International Journal of Molecular Medical Science, 2024, Vol.14, No.5, 274-292 http://medscipublisher.com/index.php/ijmms 290 Manjunath K.N., Siddalingaswamy P., and Prabhu G.K., 2019, Domain-based analysis of colon polyp in CT colonography using image-processing techniques, Asian. Pac. J. Cancer Prev., 20(2): 629-637. https://doi.org/10.31557/APJCP.2019.20.2.629 Mathias R., Taub M., Gignoux C., Fu W., Musharoff S., O’Connor T., Vergara C., Torgerson D., Pino-Yanes M., Shringarpure S., Huang L., Rafaels N., Boorgula M., Johnston H., Ortega V., Levin A., Song W., Torres R., Padhukasahasram B., Eng C., Mejia-Mejia D., Ferguson T., Qin Z., Scott A., Yazdanbakhsh M., Wilson J., Marrugo J., Lange L., Kumar R.,Avila P., Williams L., Watson H., Ware L., Olopade C., Olopade O., Oliveira R., Ober C., Nicolae D., Meyers D., Mayorga A., Knight-Madden J., Hartert T., Hansel N., Foreman M., Ford J., Faruque M., Dunston G., Caraballo L., Burchard E., Bleecker E., Araujo M., Herrera-Paz E., Gietzen K., Grus W., Bamshad M., Bustamante C., Kenny E., Hernandez R., Beaty T., Ruczinski I., Akey J., Ga M., Campbell M., Chavan S., Foster C., Gao L., Horowitz E., Ortiz R., Potee J., Gao J., Hu Y., Hansen M., Deshpande A., Locke D., Grammer L., Kim K., Schleimer R., Vega F., Szpiech Z., Oluwole O., Arinola G., Correa A., Musani S., Chong J., Nickerson D., Reiner A., Maul P., Maul T., Martínez B., Meza C., Ayestas G., Landaverde-Torres P., Erazo S., Martinez R., Mayorga L., Ramos H., Saenz A., Varela G., Vasquez O., Samms-Vaughan M., Wilks R., Adegnika A., Ateba-Ngoa U., and Barnes K., 2016, A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome, Nat. Commun., 7: 12522. https://doi.org/10.1038/ncomms12522 Maretty L., Jensen J., Petersen B., Sibbesen J., Liu S., Villesen P., Skov L., Belling K., Have C., Izarzugaza J., Grosjean M., Bork-Jensen J., Grove J., Als T., Huang S., Chang Y., Xu R., Ye W., Rao J., Guo X., Sun J., Cao H., Ye C., Beusekom J., Espeseth T., Flindt E., Friborg R., Halager A., Hellard S., Hultman C., Lescai F., Li S., Lund O., Løngreen P., Mailund T., Matey-Hernandez M., Mors O., Pedersen C., Sicheritz-Pontén T., Sullivan P., Syed A., Westergaard D., Yadav R., Li N., Xu X., Hansen T., Krogh A., Bolund L., Sørensen T., Pedersen O., Gupta R., Rasmussen S., Besenbacher S., Børglum A., Wang J., Eiberg H., Kristiansen K., Brunak S., and Schierup M., 2017, Sequencing and de novo assembly of 150 genomes from Denmark as a population reference, Nature, 548(7665): 87-91. https://doi.org/10.1038/nature23264 Menyhárt O., and Győrffy B., 2021, Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis, Comput Struct Biotechnol J., 19: 949-960. https://doi.org/10.1016/j.csbj.2021.01.009 Moya L., Meijer J., Schubert S., Matin F., and Batra J., 2019, Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289 expression as biomarker for prostate cancer diagnosis, Int. J. Mol. Sci., 20(5): 1154. https://doi.org/10.3390/ijms20051154 Mo Q., and Shen R., 2018, 2-18, iClusterPlus: Integrative clustering of multi-type genomic data, Bioconductor R Package Version, 2018: 1. Nassar F.J., Nasr R., and Talhouk R., 2017, MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction, Pharmacol. Ther., 172: 34-49. https://doi.org/10.1016/j.pharmthera.2016.11.012 Network C.G.A., 2012, Comprehensive molecular characterization of human colon and rectal cancer, Nature, 487(7407): 330-337. https://doi.org/10.1038/nature11252 Nicora G., Vitali F., Dagliati A., Geifman N., and Bellazzi R., 2020, Integrated multi-omics analyses in oncology: a review of machine learning methods and tools, Frontiers in Oncology, 10: 1030. https://doi.org/10.3389/fonc.2020.01030 Peng A., Mao X., Zhong J., Fan S., and Hu Y., 2020, Single-cell multi-omics and its prospective application in cancer biology, Proteomics, 20(13): 1900271. https://doi.org/10.1002/pmic.201900271 Qiu Y., Ching W.K., and Zou Q.J.B.i.B., 2021a, Prediction of rna-binding protein and alternative splicing event associations during epithelial-mesenchymal transition based on inductive matrix completion, Briefings in Bioinformatics,22(5): bbaa440. https://doi.org/10.1093/bib/bbaa440 Qiu Y., Ching W.K., and Zou Q.J.B.i.B., 2021b, Matrix factorization-based data fusion for the prediction of RNA-binding proteins and alternative splicing event associations during epithelial-mesenchymal transition, Briefings in Bioinformatics, 22(6): bbab332. https://doi.org/10.1093/bib/bbab332 Qiu Y., Lyu J., Dunlap M., Harvey S.E., and Cheng C., 2020, A combinatorially regulated RNA splicing signature predicts breast cancer EMT states and patient survival, RNA, 26(9): 1257-1267. https://doi.org/10.1261/rna.074187.119 Reel P.S., Reel S., Pearson E., Trucco E., and Jefferson E., 2021, Using machine learning approaches for multi-omics data analysis: a review, Biotechnology Advances, 49: 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 Regev A., Teichmann S., Lander E., Amit I., Benoist C., Birney E., Bodenmiller B., Campbell P., Carninci P., Clatworthy M., Clevers H., Deplancke B., Dunham I., Eberwine J., Eils R., Enard W., Farmer A., Fugger L., Göttgens B., Hacohen N., Haniffa M., Hemberg M., Kim S., Klenerman P., Kriegstein A., Lein E., Linnarsson S., Lundberg E., Lundeberg J., Majumder P., Marioni J., Merad M., Mhlanga M., Nawijn M., Netea M., Nolan G., Pe’er D., Phillipakis A., Ponting C., Quake S., Reik W., Rozenblatt-Rosen O., Sanes J., Satija R., Schumacher T., Shalek A., Shapiro E., Sharma P., Shin J., Stegle O., Stratton M., Stubbington M., Theis F., Uhlén M., Oudenaarden A., Wagner A., Watt F., Weissman J., Wold B., Xavier R., and Yosef N., 2017, The Human Cell Atlas, eLife, 6: e27041. Ren H., Chen Z., Yang L., Xiong W., Yang H., Xu K., Zhai E., Ding L., He Y., and Song X., 2019, Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer, Cancer Manag Res., 11: 4917-4930. https://doi.org/10.2147/CMAR.S192529

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==