IJMMS_2024v14n4

International Journal of Molecular Medical Science, 2024, Vol.14, No.4, 216-226 http://medscipublisher.com/index.php/ijmms 225 Chen S.Y., 2024, Crossing disease boundaries: how ai drives rare disease drug discovery, Bioscience Evidence, 14(1): 21-28. https://doi.org/10.5376/be.2024.14.0003 Cheng Y., Liu H., Yuan R., Yuan K., and Yu S., 2023, Effectiveness of pharmacogenomics on the response and remission of treatment-resistant depression: a meta-analysis of randomised controlled trials, General Psychiatry, 36(6): 2023. https://doi.org/10.1136/gpsych-2023-101050 PMid:38155841 PMCid:PMC10753713 Ciuculete D., Voisin S., Kular L., Jonsson J., Rask-Andersen M., Mwinyi J., and Schiöth H., 2020, meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes, Clinical Epigenetics, 12: 1-4. https://doi.org/10.1186/s13148-020-00884-8 PMid:32616021 PMCid:PMC7333393 Cohen-Woods S., Craig I., and McGuffin P., 2012, The current state of play on the molecular genetics of depression, Psychological Medicine, 43: 673-687. https://doi.org/10.1017/S0033291712001286 PMid:22687339 Fabbri C., Corponi F., Souery D., Kasper S., Montgomery S., Zohar J., Rujescu D., Mendlewicz J., and Serretti A., 2018, The genetics of treatment-resistant depression: a critical review and future perspectives, International Journal of Neuropsychopharmacology, 22: 93-104. https://doi.org/10.1093/ijnp/pyy024 Greden J., Parikh S., Rothschild A., Thase M., Dunlop B., Debattista C., Conway C., Forester B., Mondimore F., Shelton R., Macaluso M., Li J., Brown K., Gilbert A., Burns L., Jablonski M., and DeChairo B., 2019, Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: A large, patient- and rater-blinded, randomized, controlled study, Journal of Psychiatric Research, 111: 59-67. https://doi.org/10.1016/j.jpsychires.2019.01.003 Holsboer F., 2008, How can we realize the promise of personalized antidepressant medicines?, Nature Reviews Neuroscience, 9: 638-646. https://doi.org/10.1038/nrn2453 Howard D., Adams M., Clarke T., Hafferty J., Gibson J., Shirali M., Coleman J., Hagenaars S., Ward J., Wigmore E., Alloza C., Shen X., Barbu M., Xu E., Whalley H., Marioni R., Porteous D., Davies G., Deary I., Hemani G., Berger K., Teismann H., Rawal R., Arolt V., Baune B., Dannlowski U., Domschke K., Tian C., Hinds D., Trzaskowski M., Byrne E., Ripke S., Smith D., Sullivan P., Wray N., Breen G., Lewis C., and McIntosh A., 2019, Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions, Nature Neuroscience, 22: 343-352. https://doi.org/10.1038/s41593-018-0326-7 Hyde C., Nagle M., Tian C., Chen X., Paciga S., Wendland J., Tung J., Hinds D., Perlis R., and Winslow A., 2016, Identification of 15 genetic loci associated with risk of major depression in individuals of European descent, Nature Genetics, 48(9): 1031-1036. https://doi.org/10.1038/ng.3623 Jovanova O., Nedeljkovic I., Spieler D., Walker R., Liu C., Luciano M., Bressler J., Brody J., Drake A., Evans K., Gondalia R., Kunze S., Kuhnel B., Lahti J., Lemaitre R., Marioni R., Swenson B., Himali J., Wu H., Li Y., McRae A., Russ T., Stewart J., Wang Z., Zhang G., Ladwig K., Uitterlinden A., Guo X., Peters A., Räikkönen K., Starr J., Waldenberger M., Wray N., Whitsel E., Sotoodehnia N., Seshadri S., Porteous D., Meurs J., Mosley T., McIntosh A., Mendelson M., Levy D., Hou L., Eriksson J., Fornage M., Deary I., Baccarelli A., Tiemeier H., and Amin N., 2018, DNA methylation signatures of depressive symptoms in middle-aged and elderly persons: meta-analysis of multiethnic epigenome-wide studies, JAMA Psychiatry, 75: 949-959. https://doi.org/10.1001/jamapsychiatry.2018.1725 PMid:29998287 PMCid:PMC6142917 Li X., Luo Z., Gu C., Hall L., McIntosh A., Zeng Y., Porteous D., Hayward C., Li M., Yao Y., Zhang C., and Luo X., 2018, Common variants on 6q16.2, 12q24.31 and 16p13.3 are associated with major depressive disorder, Neuropsychopharmacology, 43(10): 2146-2153. https://doi.org/10.1038/s41386-018-0078-9 PMid:29728651 PMCid:PMC6098070 Lin E., Kuo P., Liu Y., Yu Y., Yang A., and Tsai S., 2018, A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers, Frontiers in Psychiatry, 9: 290. https://doi.org/10.3389/fpsyt.2018.00290 PMid:30034349 PMCid:PMC6043864 Miller D., and O'Callaghan J., 2013, Personalized medicine in major depressive disorder-opportunities and pitfalls, Metabolism, 62(Suppl 1): S34-S39. https://doi.org/10.1016/j.metabol.2012.08.021 PMid:23021040 PMCid:PMC4672728 Murphy E., and McMahon F., 2013, Pharmacogenetics of antidepressants, mood stabilizers, and antipsychotics in diverse human populations, Discovery Medicine, 16(87): 113-122. Neto F., and Rosa J., 2019, Depression biomarkers using non-invasive EEG: a review, Neuroscience and Biobehavioral Reviews, 105: 83-93. https://doi.org/10.1016/j.neubiorev.2019.07.021 Ormel J., Hartman C., and Snieder H., 2019, The genetics of depression: successful genome-wide association studies introduce new challenges, Translational Psychiatry, 9(1): 114. https://doi.org/10.1038/s41398-019-0450-5 Palma-Gudiel H., Córdova-Palomera A., Navarro V., and Fañanás L., 2020, Twin study designs as a tool to identify new candidate genes for depression: a systematic review of DNA methylation studies, Neuroscience and Biobehavioral Reviews, 112: 345-352.

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==