IJMMS_2024v14n4

International Journal of Molecular Medical Science, 2024, Vol.14, No.4, 203-215 http://medscipublisher.com/index.php/ijmms 214 Pons D., Vries F., Elsen P., Heijmans B., Quax P., and Jukema J., 2008, Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease, European Heart Journal, 30(3): 266-277. https://doi.org/10.1093/eurheartj/ehn603 PMid:19147603 Quagliano A., Acevedo D., Hardigan P., and Prasad S., 2022, Using clustered regularly interspaced short palindromic repeats gene editing to induce permanent expression of fetal hemoglobin in β-thalassemia and sickle cell disease: a comparative meta-analysis, Frontiers in Medicine, 9: 943631. https://doi.org/10.3389/fmed.2022.943631 PMid:36250099 PMCid:PMC9556862 Rabal O., José-Enériz E., Agirre X., Sánchez-Arias J., Miguel I., Ordoñez R., Gárate L., Miranda E., Sáez E., Vilas-Zornoza A., Pineda-Lucena A., Estella A., Zhang F., Wu W., Xu M., Prósper F., and Oyarzábal J., 2021, Design and synthesis of novel epigenetic inhibitors targeting histone deacetylases, DNA methyltransferase 1, and lysine methyltransferase G9a with In Vivo Efficacy in Multiple Myeloma, Journal of Medicinal Chemistry, 64(6): 3392-3426. https://doi.org/10.1021/acs.jmedchem.0c02255 PMid:33661013 Sales R., Belisário A., Faria G., Mendes F., Luizon M., and Viana M., 2020, Functional polymorphisms of BCL11A and HBS1L-MYB genes affect both fetal hemoglobin level and clinical outcomes in a cohort of children with sickle cell anemia, Annals of Hematology, 99: 1453-1463. https://doi.org/10.1007/s00277-020-04079-2 PMid:32447424 Sales R., Nogueira B., Tosatti J., Gomes K., and Luizon M., 2022, Do genetic polymorphisms affect fetal hemoglobin (HbF) Levels in patients with sickle cell anemia treated with hydroxyurea? a systematic review and pathway analysis, Frontiers in Pharmacology, 12: 779497. https://doi.org/10.3389/fphar.2021.779497 PMid:35126118 PMCid:PMC8814522 Sangokoya C., Telen M., and Chi J., 2010, microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease, Blood, 116(20) 4338-4348. https://doi.org/10.1182/blood-2009-04-214817 PMid:20709907 PMCid:PMC2993631 Silva-Llanes I., Shin C., Jiménez-Villegas J., Gorospe M., and Lastres-Becker I., 2023, The transcription factor NRF2 has epigenetic regulatory functions modulating HDACs, DNMTs, and miRNA biogenesis, Antioxidants, 12(3): 641. https://doi.org/10.3390/antiox12030641 PMid:36978889 PMCid:PMC10045347 Silva M., and Faustino P., 2023, From stress to sick(le) and back again–oxidative/antioxidant mechanisms, genetic modulation, and cerebrovascular disease in children with sickle cell Anemia, Antioxidants, 12(11): 1977. https://doi.org/10.3390/antiox12111977 PMid:38001830 PMCid:PMC10669666 Smith Z., and Meissner A., 2013, DNA methylation: roles in mammalian development, Nature Reviews Genetics, 14: 204-220. https://doi.org/10.1038/nrg3354 PMid:23400093 Sundd P., Gladwin M., and Novelli E., 2019, Pathophysiology of sickle cell disease, Annual Review of Pathology, 14: 263-292. https://doi.org/10.1146/annurev-pathmechdis-012418-012838 PMid:30332562 PMCid:PMC7053558 Steinberg M., 2020, Fetal Hemoglobin in sickle cell anemia, Blood, 136(21): 2392-2400. https://doi.org/10.1182/blood.2020007645 PMid:32808012 PMCid:PMC7685210 Steinberg M., and Sebastiani P., 2012, Genetic modifiers of sickle cell disease, American Journal of Hematology, 87(8): 795-803. https://doi.org/10.1002/ajh.23232 PMid:22641398 PMCid:PMC4562292 Tachiwana H., and Saitoh N., 2021, Nuclear long non-coding RNAs as epigenetic regulators in cancer, Current Medicinal Chemistry, 28(25): 5098-5109. https://doi.org/10.2174/0929867328666210215114506 PMid:33588720 Wang Y., Yu L., Engel J., and Singh S., 2020, Epigenetic activities in erythroid cell gene regulation, Seminars in Hematology, 58(1): 4-9. https://doi.org/10.1053/j.seminhematol.2020.11.007 PMid:33509442 PMCid:PMC7846819 Wei J., Huang K., Yang C., and Kang C., 2017, Non-coding RNAs as regulators in epigenetics (Review), Oncology Reports, 37(1): 3-9. https://doi.org/10.3892/or.2016.5236 PMid:27841002 Xiong Y., Dowdy S., Podratz K., Jin F., Attewell J., Eberhardt N., and Jiang S., 2005, Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells, Cancer Research, 65(7): 2684-2689. https://doi.org/10.1158/0008-5472.CAN-04-2843 PMid:15805266

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==