IJMMS_2024v14n4

International Journal of Molecular Medical Science, 2024, Vol.14, No.4, 203-215 http://medscipublisher.com/index.php/ijmms 211 potential of epigenetic therapies, such as the use of DNA methylation inhibitors or histone deacetylase inhibitors, could provide new avenues for treatment. Moreover, exploring the crosstalk between epigenetic and epitranscriptomic mechanisms could offer deeper insights into the complex regulatory networks governing gene expression in sickle cell anemia. In conclusion, the role of epigenetic regulatory mechanisms in sickle cell anemia is a promising area of research that holds potential for novel therapeutic strategies. The reversible nature of epigenetic modifications presents an opportunity for developing targeted treatments that can modify disease outcomes. As our understanding of these mechanisms deepens, it is imperative to translate these insights into clinical applications that can improve the quality of life for individuals with sickle cell anemia. Continued interdisciplinary research efforts will be essential in unraveling the complexities of epigenetic regulation and harnessing this knowledge for therapeutic benefit. Acknowledgments Thank you to the peer reviewers for providing feedback on this study. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Akinsheye I., Alsultan A., Solovieff N., Ngo D., Baldwin C., Sebastiani P., Chui D., and Steinberg M., 2011, Fetal hemoglobin in sickle cell anemia, Blood, 118(1): 19-27. https://doi.org/10.1182/blood-2011-03-325258 PMid:21490337 PMCid:PMC3139383 Alagia A., and Gullerová M., 2022, The methylation game: epigenetic and epitranscriptomic dynamics of 5-methylcytosine, Frontiers in Cell and Developmental Biology, 10: 915685. https://doi.org/10.3389/fcell.2022.915685 PMid:35721489 PMCid:PMC9204050 Bae H., Baldwin C., Sebastiani P., Telen M., Ashley-Koch A., Garrett M., Hooper W., Bean C., DeBaun M., Arking D., Bhatnagar P., Casella J., Keefer J., Barron-Casella E., Gordeuk V., Kato G., Minniti C., Taylor J., Campbell A., Luchtman-Jones L., Hoppe C., Gladwin M., Zhang Y., and Steinberg M., 2012, Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans, Blood, 120(9): 1961-1962. https://doi.org/10.1182/blood-2012-06-432849 PMid:22936743 PMCid:PMC3433099 Bajbouj K., Al-Ali A., Ramakrishnan R., Saber-Ayad M., and Hamid Q., 2021, Histone modification in NSCLC: molecular mechanisms and therapeutic targets, International Journal of Molecular Sciences, 22(21): 11701. https://doi.org/10.3390/ijms222111701 PMid:34769131 PMCid:PMC8584007 Bao X., Zhang X., Wang L., Wang Z., Huang J., Zhang Q., Ye Y., Liu Y., Chen D., Zuo Y., Liu Q., Xu P., Huang B., Fang J., Lao J., Feng X., Li Y., Kurita R., Nakamura Y., Yu W., Ju C., Huang C., Mohandas N., Li D., Zhao C., and Xu X., 2021, Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia, American Journal of Human Genetics, 108(4): 709-721. https://doi.org/10.1016/j.ajhg.2021.03.005 PMid:33735615 PMCid:PMC8059375 Binnie A., Tsang J., Hu P., Carrasqueiro G., Castelo-Branco P., and Santos C., 2020, Epigenetics of sepsis, Critical Care Medicine, 48: 745-756. https://doi.org/10.1097/CCM.0000000000004247 PMid:32167492 Breiling A., and Lyko F., 2015, Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond, Epigenetics & Chromatin, 8: 24 https://doi.org/10.1186/s13072-015-0016-6 PMid:26195987 PMCid:PMC4507326 Carbajo-García M., Miguel-Gómez L., Juárez-Barber E., Trelis A., Monleón J., Pellicer A., Flanagan J., and Ferrero H., 2022, Deciphering the role of histone modifications in uterine leiomyoma: acetylation of H3K27 regulates the expression of genes involved in proliferation, cell signaling, cell transport, Angiogenesis and Extracellular Matrix Formation, Biomedicines, 10(6): 1279. https://doi.org/10.3390/biomedicines10061279 PMid:35740301 PMCid:PMC9219820 Chen D., Zuo Y., Zhang X., Ye Y., Bao X., Huang H., Tepakhan W., Wang L., Ju J., Chen G., Zheng M., Liu D., Huang S., Zong L., Li C., Chen Y., Zheng C., Shi L., Zhao Q., Wu Q., Fucharoen S., Zhao C., and Xu X., 2017, A genetic variant ameliorates β-thalassemia severity by epigenetic-mediated elevation of human fetal hemoglobin expression, American Journal of Human genetics, 101(1): 130-138.

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==