IJMMS_2024v14n3

International Journal of Molecular Medical Science, 2024, Vol.14, No.3, 193-202 http://medscipublisher.com/index.php/ijmms 201 Hanna R., Frangoul H., McKinney C., Pineiro L., Mapara M., Dalal J., Chang K., Jaskolka M., Kim K., Farrington D., Wally M., Mei B., Lawal A., Afonja O., and Walters M., 2023, AsCas12a gene editing of HBG1/2 Promoters with edit-301 results in rapid and sustained normalization of hemoglobin and increased fetal hemoglobin in patients with severe sickle cell disease and transfusion-dependent beta-thalassemia, Blood, 142(1): 4996. https://doi.org/10.1182/blood-2023-187397 Hoban M., Lumaquin D., Kuo C., Romero Z., Long J., Ho M., Young C., Mojadidi M., Fitz-Gibbon S., Cooper A., Lill G., Urbinati F., Campo-Fernandez B., Bjurstrom C., Pellegrini M., Hollis R., and Kohn D., 2016, CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells, Molecular Therapy: the Journal of the American Society of Gene Therapy, 24(9): 1561-1569. https://doi.org/10.1038/mt.2016.148 PMid:27406980 PMCid:PMC5113113 Hossain M., and Bungert J., 2017, Genome editing for sickle cell disease: a little BCL11A goes a long way, Molecular Therapy : the Journal of the American Society of Gene Therapy, 25(3): 561-562. https://doi.org/10.1016/j.ymthe.2017.02.003 PMid:28190778 PMCid:PMC5363208 Ikawa Y., Miccio A., Magrin E., Kwiatkowski J., Rivella S., and Cavazzana M., 2019, Gene therapy of hemoglobinopathies: progress and future challenges, Human Molecular Genetics, 28(R1): R24-R30. https://doi.org/10.1093/hmg/ddz172 PMid:31322165 Ji K., 2020, Correction of the sickle cell mutation through base and prime editing in hematopoietic stem cells, Preprints, 2020: 090490. https://doi.org/10.20944/preprints202009.0490.v1 Kantor A., McClements M., and MacLaren R., 2020, CRISPR-Cas9 DNA base-editing and prime-editing, International Journal of Molecular Sciences, 21(17): 6240. https://doi.org/10.3390/ijms21176240 PMid:32872311 PMCid:PMC7503568 Lin L., Rybak A., Rinaldi C., Yen J., Fu Y., Akrawi E., Smith S., Haskett S., Sanchez M., Poh Y., Packer M., Gaudelli N., Singh M., Ciaramella G., and Levasseur D., 2019, Complementary base editing approaches for the treatment of sickle cell disease and beta thalassemia, Blood, 134(1): 3352. https://doi.org/10.1182/blood-2019-126710 Lin M., Paik E., Mishra B., Burkhardt D., Kernytsky A., Pettiglio M., Chen Y., Tomkinson K., Woo A., Cortes M., Tan S., Borland T., Klein L., Yen A., Mahajan S., Chan E., Eustace B., Porteus M., Chakraborty T., Cowan C., Novak R., and Lundberg A., 2017, CRISPR/Cas9 genome editing to treat sickle cell disease and B-Thalassemia: Re-creating genetic variants to upregulate fetal hemoglobin appear well-tolerated, effective and durable, Blood, 130: 284-284. Moran K., Ling H., Lessard S., Vieira B., Hong V., Holmes M., Reik A., Dang D., Gray D., Levasseur D., and Rimmelé P., 2018, Ex vivo gene-edited cell therapy for sickle cell disease: disruption of the BCL11A erythroid enhancer with zinc finger nucleases increases fetal hemoglobin in plerixafor mobilized human CD34+ Cells, Blood, 132(1): 2190. https://doi.org/10.1182/blood-2018-99-116998 Newby G., Yen J., Woodard K., Mayuranathan T., Lazzarotto C., Li Y., Sheppard-Tillman H., Porter S., Yao Y., Mayberry K., Everette K., Jang Y., Podracky C., Thaman E., Lechauve C., Sharma A., Henderson J., Richter M., Zhao K., Miller S., Wang T., Koblan L., McCaffrey A., Tisdale J., Kalfa T., Pruett-Miller S., Tsai S., Weiss M., and Liu D., 2021, Base editing of haematopoietic stem cells rescues sickle cell disease in mice, Nature, 595: 295-302. https://doi.org/10.1038/s41586-021-03609-w PMid:34079130 PMCid:PMC8266759 Park S., Lee C., Dever D., Davis T., Camarena J., Srifa W., Zhang Y., Paikari A., Chang A., Porteus M., Sheehan V., and Bao G., 2019, Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease, Nucleic Acids Research, 47: 7955-7972. https://doi.org/10.1093/nar/gkz475 PMid:31147717 PMCid:PMC6735704 Quagliano A., Acevedo D., Hardigan P., and Prasad S., 2022, Using clustered regularly interspaced short palindromic repeats gene editing to induce permanent expression of fetal hemoglobin in β-thalassemia and sickle cell disease: a comparative meta-analysis, Frontiers in Medicine, 9: 943631. https://doi.org/10.3389/fmed.2022.943631 PMid:36250099 PMCid:PMC9556862 Quintana-Bustamante O., Fañanas-Baquero S., Dessy-Rodríguez M., Ojeda-Pérez I., and Segovia J., 2022, Gene editing for inherited red blood cell diseases, Frontiers in Physiology, 13: 848261. https://doi.org/10.3389/fphys.2022.848261 PMid:35418876 PMCid:PMC8995967 Rahimmanesh I., Boshtam M., Kouhpayeh S., Khanahmad H., Dabiri A., Ahangarzadeh S., Esmaeili Y., Bidram E., Vaseghi G., Javanmard S., Shariati L., Zarrabi A., and Varma R., 2022, Gene editing-based technologies for beta-hemoglobinopathies treatment, Biology, 11(6): 862. https://doi.org/10.3390/biology11060862 PMid:35741383 PMCid:PMC9219845 Randolph M., and Zhao W., 2015, Genome editing and stem cell therapy pave the path for new treatment of sickle-cell disease, Stem Cell Investigation, 2: 22. Romero Z., DeWitt M., and Walters M., 2018, Promise of gene therapy to treat sickle cell disease, Expert Opinion on Biological Therapy, 18: 1123-1136. https://doi.org/10.1080/14712598.2018.1536119 PMid:30324810

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==