IJMMS_2024v14n3

International Journal of Molecular Medical Science, 2024, Vol.14, No.3, 155-166 http://medscipublisher.com/index.php/ijmms 165 Kararoudi M., Hejazi S., Elmas E., Hellström M., Kararoudi M., Padma A., Lee D., and Dolatshad H., 2018, Clustered regularly interspaced short palindromic Repeats/Cas9 gene editing technique in xenotransplantation, Frontiers in Immunology, 9: 1711. https://doi.org/10.3389/fimmu.2018.01711 PMid:30233563 PMCid:PMC6134075 Kimberland M., Hou W., Alfonso-Pecchio A., Wilson S., Rao Y., Zhang S., and Lu Q., 2018, Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments, Journal of biotechnology, 284: 91-101. https://doi.org/10.1016/j.jbiotec.2018.08.007 PMid:30142414 Li L., Hu S., and Chen X., 2018, Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities, Biomaterials, 171: 207-218. https://doi.org/10.1016/j.biomaterials.2018.04.031 PMid:29704747 PMCid:PMC5944364 Liang P., Xu Y., Zhang X., Ding C., Huang R., Zhang Z., Lv J., Xie X., Chen Y., Li Y., Sun Y., Bai Y., Songyang Z., Ma W., Zhou C., and Huang J., 2015, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes, Protein & Cell, 6: 363-372. https://doi.org/10.1007/s13238-015-0153-5 PMid:25894090 PMCid:PMC4417674 Matson A., Hosny N., Swanson Z., Hering B., and Burlak C., 2019, Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system, PLoS ONE, 14(12): e0226107. https://doi.org/10.1371/journal.pone.0226107 PMid:31821359 PMCid:PMC6903732 Memi F., Ntokou A., and Papangeli I., 2018, CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations, Seminars in Perinatology, 42(8): 487-500. https://doi.org/10.1053/j.semperi.2018.09.003 PMid:30482590 Naert T., and Vleminckx K., 2018, CRISPR/Cas9 disease models in zebrafish and Xenopus: the genetic renaissance of fish and frogs, drug discovery today. Technologies, 28: 41-52. https://doi.org/10.1016/j.ddtec.2018.07.001 PMid:30205880 Niu D., Wei H., Lin L., George H., Wang T., Lee I., Zhao H., Wang Y., Kan Y., Shrock E., Lesha E., Wang G., Luo Y., Qing Y., Jiao D., Zhao H., Zhou X., Wang S., Wei H., Güell M., Church G., and Yang L., 2017, Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9, Science, 357: 1303-1307. https://doi.org/10.1126/science.aan4187 PMid:28798043 PMCid:PMC5813284 Ricci C., Chen J., Miao Y., Jinek M., Doudna J., McCammon J., and Palermo G., 2019, Deciphering off-target effects in CRISPR-Cas9 through accelerated molecular dynamics, ACS Central Science, 5: 651-662. https://doi.org/10.1021/acscentsci.9b00020 PMid:31041385 PMCid:PMC6487449 Ross M., Coates P., and Coates P., 2018, Using CRISPR to inactivate endogenous retroviruses in pigs: an important step toward safe xenotransplantation?, Kidney international, 93(1): 4-6. https://doi.org/10.1016/j.kint.2017.11.004 PMid:29198467 Ryczek N., Hryhorowicz M., Zeyland J., Lipiński D., and Słomski R., 2021, CRISPR/Cas technology in pig-to-human xenotransplantation research, International journal of molecular sciences, 22(6): 3196. https://doi.org/10.3390/ijms22063196 PMid:33801123 PMCid:PMC8004187 Salomon D., 2016, A CRISPR way to block PERVs--engineering organs for transplantation, The New England Journal of Medicine, 374(11): 1089-1091. https://doi.org/10.1056/NEJMcibr1515623 PMid:26981939 Tanihara F., Hirata M., Nguyen N., Sawamoto O., Kikuchi T., and Otoi T., 2021, One-step generation of multiple gene-edited pigs by electroporation of the CRISPR/Cas9 system into zygotes to reduce xenoantigen biosynthesis, International Journal of Molecular Sciences, 22(5): 2249. https://doi.org/10.3390/ijms22052249 PMid:33668187 PMCid:PMC7956194 Wang H., Li M., Lee C., Chakraborty S., Kim H., Bao G., and Leong K., 2017, CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery, Chemical Reviews, 117(15): 9874-9906. https://doi.org/10.1021/acs.chemrev.6b00799 PMid:28640612 Wei T., Cheng Q., Farbiak L., Anderson D., Langer R., and Siegwart D., 2020, Delivery of tissue-targeted scalpels: opportunities and challenges for In Vivo CRISPR/Cas-based genome editing, ACS nano, 14(8): 9243-9262. https://doi.org/10.1021/acsnano.0c04707

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==