International Journal of Clinical Case Reports, 2025, Vol.15, No.3, 98-109 http://medscipublisher.com/index.php/ijccr 108 Kelly C., Karthikesalingam A., Suleyman M., Corrado G., and King D., 2019, Key challenges for delivering clinical impact with artificial intelligence, BMC Medicine, 17: 1-9. https://doi.org/10.1186/s12916-019-1426-2 Kermany D.S., Kermany, D., Goldbaum, M., Cai, W., Valentim, C., Liang, H., Baxter, S., McKeown, A., Yang, G., Wu, X., Yan, F., Dong J., Prasadha M., Pei J., Pei J., Ting M., Zhu J., Li C., Hewett S., Hewett S., Dong J., Ziyar I., Shi A., Zhang R., Zheng L., Hou R., Shi W., Fu X., Fu X., Duan Y., Huu V., Huu V., Wen C., Zhang E., Zhang E., Zhang C., Zhang C., Li O., Li O., Wang X., Singer M., Sun X., Xu J., Tafreshi A., Lewis M., Xia H.M., and Zhang K., 2018, Identifying medical diagnoses and treatable diseases by image-based deep learning, Cell, 172: 1122-1131. https://doi.org/10.1016/j.cell.2018.02.010 Kiefer J., Kopp M., Ruettinger T., Heiss R., Wuest W., Amarteifio P., Stroebel A., Uder M., and May M., 2023, Diagnostic accuracy and Performance analysis of a scanner-integrated artificial intelligence model for the detection of intracranial hemorrhages in a traumatology emergency department, Bioengineering, 10(12): 1362. https://doi.org/10.3390/bioengineering10121362 Kim J., Oh S., Kim J., Meyer H., Huwer S., Zhao G., and Han D., 2023, Assessment of deep learning-based triage application for acute ischemic stroke on brain mri in the emergency room, Acad. Radiol., 31(11): 4621-4628. https://doi.org/10.1101/2023.10.05.23296577 Kundeti S., Vaidyanathan M., Shivashankar B., and Gorthi S., 2021, Systematic review protocol to assess artificial intelligence diagnostic accuracy performance in detecting acute ischaemic stroke and large-vessel occlusions on CT and MR medical imaging, BMJ Open, 11(3): e043665. https://doi.org/10.1136/bmjopen-2020-043665 Levi M., Bernstein M., and Waeiss C., 2022, Broadening the ethical scope, The American Journal of Bioethics, 22(5): 26-28. https://doi.org/10.1080/15265161.2022.2055219 Li Z., Zhang X., Ding L., Jing J., Gu H., Jiang Y., Meng X., Du C., Wang C., Wang M., Xu M., Zhang Y., Hu M., Li H., Gong X., Dong K., Zhao X., Wang Y., Liu L., Xian Y., Peterson E., Fonarow G., Schwamm L., and Wang Y., 2023, Rationale and design of the GOLDEN BRIDGE II: a cluster-randomised multifaceted intervention trial of an artificial intelligence-based cerebrovascular disease clinical decision support system to improve stroke outcomes and care quality in China, Stroke and Vascular Neurology, ;9: e002411. https://doi.org/10.1136/svn-2023-002411 Matsoukas S., Morey J., Lock G., Chada D., Shigematsu T., Marayati N., Delman B., Doshi A., Majidi S., Leacy R., Kellner C., and Fifi J., 2022, AI software detection of large vessel occlusion stroke on CT angiography: a real-world prospective diagnostic test accuracy study, Journal of NeuroInterventional Surgery, 15(1): 52-56. https://doi.org/10.1136/neurintsurg-2021-018391 Murray N., Unberath M., Hager G., and Hui F., 2019, Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review, Journal of NeuroInterventional Surgery, 12(2): 156-164. https://doi.org/10.1136/neurintsurg-2019-015135 Petersson L., Vincent K., Svedberg P., Nygren J., and Larsson I., 2023, Ethical considerations in implementing AI for mortality prediction in the emergency department: linking theory and practice, Digital Health, 9: 20552076231206588. https://doi.org/10.1177/20552076231206588 Sarmento R., Vasconcelos F., Filho P., and Albuquerque V., 2020, An IoT platform for the analysis of brain CT images based on Parzen analysis, Future Gener. Comput. Syst., 105: 135-147. https://doi.org/10.1016/j.future.2019.11.033 Seyam, M., Weikert T., Sauter A., Brehm A., Psychogios, M., and Blackham, K., 2022, Utilization of artificial intelligence-based intracranial hemorrhage detection on emergent noncontrast ct images in clinical workflow, radiology, Artificial Intelligence, 4(2): e210168. https://doi.org/10.1148/ryai.210168 Sharma P., Suehling M., Flohr T., and Comaniciu D., 2020, Artificial intelligence in diagnostic imaging: status quo, challenges, and future opportunities, Journal of Thoracic Imaging, 35: S11-S16. https://doi.org/10.1097/RTI.0000000000000499 Stewart J., Sprivulis P., and Dwivedi G., 2018, Artificial intelligence and machine learning in emergency medicine, Emergency Medicine Australasia, 30(6): 870-874. https://doi.org/10.1111/1742-6723.13145 Tarnutzer A., Lee S., Robinson K., Wang Z., Edlow J., and Newman-Toker D., 2017, ED misdiagnosis of cerebrovascular events in the era of modern neuroimaging, Neurology, 88: 1468-1477. https://doi.org/10.1212/WNL.0000000000003814 Tat E., and Rabbat M., eds, 2021, Ethical and legal challenges, Academic Press, Massachusetts, USA, pp.395-410. https://doi.org/10.1016/B978-0-12-820273-9.00017-8 Tran B., Latkin C., Vu G., Nguyen H., Nghiem S., Tan M., Lim Z., Ho C., and Ho R., 2019, The current research landscape of the application of artificial intelligence in managing cerebrovascular and heart diseases: a bibliometric and content analysis, International Journal of Environmental Research and Public Health, 16(15): 2699. https://doi.org/10.3390/ijerph16152699
RkJQdWJsaXNoZXIy MjQ4ODYzNA==