IJCCR_2025v15n3

International Journal of Clinical Case Reports, 2025, Vol.15, No.3, 98-109 http://medscipublisher.com/index.php/ijccr 107 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abedi V., Khan A., Chaudhary D., Misra D., Avula V., Mathrawala D., Kraus C., Marshall K., Chaudhary N., Li X., Schirmer C., Scalzo F., Li J., and Zand R., 2020, Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework, Therapeutic Advances in Neurological Disorders, 13: 1756286420938962. https://doi.org/10.1177/1756286420938962 Abedi V., Razavi S.M., Khan A., Avula V., Tompe A., Poursoroush A., Sadr A., Li J., and Zand R., 2021, Artificial intelligence: a shifting paradigm in cardio-cerebrovascular medicine, Journal of Clinical Medicine, 10(23): 5710. https://doi.org/10.3390/jcm10235710 Alaya I., Limam H., and Kraiem T., 2021, Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: current practices and future directions, Clinical Imaging, 81: 79-86. https://doi.org/10.1016/j.clinimag.2021.09.015 Antón-Munárriz C., Pastor-Vargas R., Haut J., Robles-Gómez A., Paoletti M., and Benítez-Andrades J., 2023, Detection of cerebral ischaemia using transfer learning techniques, 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), 2023: 589-594. https://doi.org/10.1109/CBMS58004.2023.00284 Biller-Andorno N., Ferrario A., Joebges S., Krones T., Massini F., Barth P., Arampatzis G., and Krauthammer M., 2020, AI support for ethical decision-making around resuscitation: proceed with care, Journal of Medical Ethics, 48(3): 175-183. https://doi.org/10.1136/medethics-2020-106786 Chan H.P., Hadjiiski L., and Samala R., 2020, Computer-aided diagnosis in the era of deep learning, Medical Physics., 47(5): e218-e227. https://doi.org/10.1002/mp.13764 (3-8) Chee M.L., Ong M., Siddiqui F., Bao W., Lim S., Ho A., and Liu N., 2021, Artificial intelligence applications for COVID-19 in intensive care and emergency settings: a systematic review, International Journal of Environmental Research and Public Health, 18(9): 4749. https://doi.org/10.3390/ijerph18094749 Chennareddy S., Kalagara R., Matsoukas S., Scaggiante J., Smith C., Majidi S., Fifi J., Mocco J., and Kellner C., 2021, Abstract 1122‐000235: artificial intelligence algorithms for hemorrhage detection in CTs and MRI scans: a systematic review, Stroke: Vascular and Interventional Neurology, 1: e12075. https://doi.org/10.1161/svin.01.suppl_1.000235 Deng B., Zhu W., Sun X., Xie Y., Dan W., Zhan Y., Xia Y., Liang X., Li J., Shi Q., and Jiang L., 2022, Development and validation of an automatic system for intracerebral hemorrhage medical text recognition and treatment plan output, Frontiers in Aging Neuroscience, 14: 798132. https://doi.org/10.3389/fnagi.2022.798132 Deshpande A., Elliott J., Jiang B., Fahadan P., Kidwell C., Wintermark M., and Laksari K., 2023, End to end stroke triage using cerebrovascular morphology and machine learning, Frontiers in Neurology, 14: 1217796. https://doi.org/10.3389/fneur.2023.1217796 Din M., Agarwal S., Grzeda M., Wood D., Modat M., and Booth T., 2022, Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis, Journal of Neurointerventional Surgery, 15(3): 262-271. https://doi.org/10.1136/jnis-2022-019456 Elbagoury B., Vlădăreanu L., Vlădăreanu V., Salem A., Travediu A., and Roushdy M., 2023, A hybrid stacked cnn and residual feedback gmdh-lstm deep learning model for stroke prediction applied on mobile ai smart hospital platform, Sensors (Basel, Switzerland), 23(7): 3500. https://doi.org/10.3390/s23073500 Gan, L., Yin, X., Huang, J., and Jia, B., 2023, Transcranial doppler analysis based on computer and artificial intelligence for acute cerebrovascular disease, Mathematical Biosciences and Engineering, 20(2): 1695-1715. https://doi.org/10.3934/mbe.2023077 Gilotra K., Swarna S., Mani R., Basem J., and Dashti R., 2023, Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease, Frontiers in Human Neuroscience, 17: 1254417. https://doi.org/10.3389/fnhum.2023.1254417 Hadjiiski L., Cha K., Chan H., Drukker K., Morra L., Näppi J., Sahiner B., Yoshida H., Chen Q., Deserno T., Greenspan H., Huisman H., Huo Z., Mazurchuk R., Petrick N., Regge D., Samala R., Summers R., Suzuki K., Tourassi G., Vergara D., and Armato S., 2022, AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in medical imaging, Medical Physics, 50(2): e1-e24. https://doi.org/10.1002/mp.16188 Hosseini M., Hosseini S., Qayumi K., Ahmady, S., and Koohestani H., 2023, The aspects of running artificial intelligence in emergency care; a scoping review, Archives of Academic Emergency Medicine, 11(1): e38. https://doi.org/10.22037/aaem.v11i1.1974 Karataş A., Doğan V., and Kiliç V., 2022, Beyin bilgisayarlı tomografi görüntülerinde yapay zeka tabanlı beyin damar hastalıkları tespiti, European Journal of Science and Technology, 2022: 1176648. https://doi.org/10.31590/ejosat.1176648

RkJQdWJsaXNoZXIy MjQ4ODYzNA==