International Journal of Clinical Case Reports 2024, Vol.14, No.4, 175-188 http://medscipublisher.com/index.php/ijccr 187 Sasako T., Yamauchi T., and Ueki K., 2023, Intensified multifactorial intervention in patients with type 2 diabetes mellitus, Diabetes and Metabolism Journal, 47: 185-197. https://doi.org/10.4093/dmj.2022.0325 PMID: 36631991 PMCID: PMC10040617 Sasso F., Pafundi P., Simeon V., Nicola L., Chiodini P., Galiero R., Rinaldi L., Nevola R., Salvatore T., Sardu C., Marfella R., Adinolfi L., Minutolo R., C U., Amelia U., Acierno C., Calatola P., Carbonara O., Caturano A., Conte G., Corigliano G., Corigliano M., D'urso R., Matteo A., Nicola L., Rosa N., Vecchio E., Giovanni G., Gatti A., Gentile S., Gesuè L., Improta L., Lampitella A., Lanzilli A., Lascar N., Masi S., Mattei P., Mastrilli V., Memoli P., Minutolo R., Nasti R., Pagano A., Pentangelo M., Pisa E., Rossi E., Sasso F., Sorrentino S., Torella R., Troise R., Trucillo P., Turco A., Turco S., Zibella F., and Zirpoli L., 2021, Efficacy and durability of multifactorial intervention on mortality and MACEs: a randomized clinical trial in type-2 diabetic kidney disease, Cardiovascular Diabetology, 20(1): 145. https://doi.org/10.1186/s12933-021-01343-1 Sherwood J., Russell S., and Putman M., 2020, New and emerging technologies in type 1 diabetes, Endocrinology and Metabolism Clinics of North America, 49: 667-678. https://doi.org/10.1016/j.ecl.2020.07.006 PMID: 33153673 PMCID: PMC7556222 Shi X., He J., Lin M., Liu C., Yan B., Song H., Wang C., Xiao F., Huang P., Wang L., Li Z., Huang Y., Zhang M., Chen C., Obst K., Li W., Yang S., Yao G., and Li X., 2021, Comparative effectiveness of team-based care with a clinical decision support system versus team-based care alone on cardiovascular risk reduction among patients with diabetes: Rationale and design of the D4C trial, American Heart Journal, 238: 45-58. https://doi.org/10.1016/j.ahj.2021.04.009 PMID: 33957103 Shin K., Lee S., Lee E., Kim C., Kang J., Lee C., Seo B., Kim A., Jung S., Kwon O., and Choi S., 2018, Electroacupuncture for painful diabetic peripheral neuropathy: a multicenter, randomized, assessor-blinded, controlled trial, Diabetes Care, 41: 141-142. https://doi.org/10.2337/dc18-1254 PMID: 30061320 Sugandh F., Chandio M., Raveena F., Kumar L., Karishma F., Khuwaja S., Memon U., Bai K., Kashif M., Varrassi G., Khatri M., and Kumar S., 2023, Advances in the management of diabetes mellitus: a focus on personalized medicine, Cureus, 15(8): e43697. https://doi.org/10.7759/cureus.43697 PMID: 37724233 PMCID: PMC10505357 Tan S., Wong J., Sim Y., Wong S., Elhassan S., Tan S., Lim G., Tay N., Annan N., Bhattamisra S., and Candasamy M., 2019, Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention, Diabetes & Metabolic Syndrome, 13(1): 364-372. https://doi.org/10.1016/j.dsx.2018.10.008 PMID: 30641727 Tsapas A., Avgerinos I., Karagiannis T., Malandris K., Manolopoulos A., Andreadis P., Liakos A., Matthews D., and Bekiari E., 2020, Comparative effectiveness of glucose-lowering drugs for type 2 diabetes, Annals of Internal Medicine, 173: 278-286. https://doi.org/10.7326/M20-0864 PMID: 32598218 Williams D., Jones H., and Stephens J., 2022, Personalized type 2 diabetes management: an update on recent advances and recommendations, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15: 281-295. https://doi.org/10.2147/DMSO.S331654 PMID: 35153495 PMCID: PMC8824792 Woldaregay A., Årsand E., Walderhaug S., Albers D., Mamykina L., Botsis T., and Hartvigsen G., 2019, Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes, Artificial Intelligence In Medicine, 98: 109-134. https://doi.org/10.1016/j.artmed.2019.07.007 Xie F., Chan J., and Ma R., 2018, Precision medicine in diabetes prevention, classification and management, Journal of Diabetes Investigation, 9: 998-1015. https://doi.org/10.1111/jdi.12830 PMID: 29499103 PMCID: PMC6123056 Xu Q., Wang L., and Sansgiry S., 2020, A systematic literature review of predicting diabetic retinopathy, nephropathy and neuropathy in patients with type 1 diabetes using machine learning, Journal of Medical Artificial Intelligence, 3: 6. https://doi.org/10.21037/jmai.2019.10.04 Yamazaki D., Hitomi H., and Nishiyama A., 2018, Hypertension with diabetes mellitus complications, Hypertension Research, 41: 147-156. https://doi.org/10.1038/s41440-017-0008-y PMID: 29353881 Yin Y., Tu Y., Zhao M., and Tang W., 2022, Effectiveness and cost-effectiveness of non-pharmacological interventions among chinese adults with prediabetes: a protocol for network meta-analysis and chime-modeled cost-effectiveness analysis, International Journal of Environmental Research and Public Health, 19(3): 1622. https://doi.org/10.3390/ijerph19031622 PMID: 35162645 PMCID: PMC8835234
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==