IJCCR_2024v14n2

International Journal of Clinical Case Reports 2024, Vol.14, No.2, 94-106 http://medscipublisher.com/index.php/ijccr 105 Kimberland M., Hou W., Alfonso-Pecchio A., Wilson S., Rao Y., Zhang S., and Lu Q., 2018, Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments, Journal of Biotechnology, 284: 91-101. https://doi.org/10.1016/j.jbiotec.2018.08.007 Klymiuk N., Aigner B., Brem G., and Wolf E., 2010, Genetic modification of pigs as organ donors for xenotransplantation, Molecular Reproduction and Development, 77(3): 209-221. https://doi.org/10.1002/mrd.21127 Kurzhagen J., Noel S., Lee K., Sadasivam M., Gharaie S., Ankireddy A., and Rabb H., 2023, T cell Nrf2/Keap1 gene editing using CRISPR/Cas9 and experimental kidney ischemia-reperfusion injury, Antioxidants and Redox Signaling, 38(13-15):959-973. https://doi.org/10.1089/ars.2022.0058 Längin M., Mayr T., Reichart B., Michel S., Buchholz S., Guethoff S., Dashkevich A., Baehr A., Egerer S., Bauer A., Mihalj M., Panelli A., Issl L., Ying J., Fresch AK., Buttgereit I., Mokelke M., Radan J., Werner F., Lutzmann I., Steen S., Sjöberg T., Paskevicius A., Qiuming L., Sfriso R., Rieben R., Dahlhoff M., Kessler B., Kemter E., Kurome M., Zakhartchenko V., Klett K., Hinkel R., Kupatt C., Falkenau A., Reu S., Ellgass R., Herzog R., Binder U., Wich G., Skerra A., Ayares D., Kind A., Schönmann U., Kaup FJ., Hagl C., Wolf E., Klymiuk N., Brenner P., and Abicht J.M., Consistent success in life-supporting porcine cardiac xenotransplantation, Nature, 564(7736): 430-433. https://doi.org/10.1038/s41586-018-0765-z Lei T., Chen L., Wang K., Du S., Gonelle-Gispert C., Wang Y., and Buhler L., 2022, Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: The first clinical steps, Frontiers in Immunology, 13: 1031185. https://doi.org/10.3389/fimmu.2022.1031185 Lessard S., Francioli L., Alfoldi J., Tardif J., Ellinor P., MacArthur D., and Lettre G., 2017, Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci, Proceedings of the National Academy of Sciences, 114(52): 11257-11266. https://doi.org/10.1073/pnas.1714640114 Li C., Brant E.J., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University, Science, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 Li M., Guo X., Cheng L., Zhang H., Zhou M., Zhang M., Yin Z., Guo T., Zhao L., and Liu H., 2024, Porcine Kidney Organoids Derived from Naïve-like Embryonic Stem Cells, International Journal of Molecular Sciences, 25(1): 682. https://doi.org/10.3390/ijms25010682 Liu J., Kumar S., Heinzel A., Gao M., Guo J., Alvarado G.F., and McMahon A.P., 2020, Renoprotective and Immunomodulatory Effects of GDF15 following AKI Invoked by Ischemia-Reperfusion Injury, Journal of the American Society of Nephrology, 31(4): 733-748. https://doi.org/10.1681/ASN.2019090876 Liu X., Wu S., Xu J., Sui C., and Wei J., 2017, Application of CRISPR/Cas9 in plant biology, Acta Pharmaceutica Sinica, 7: 292-302. https://doi.org/10.1016/j.apsb.2017.01.002 Liu Y., Qin L., Tong R., Liu T., Ling C., Lei T., Zhang D., Wang Y., and Deng S., 2020, Regulatory changes in China on xenotransplantation and related products, Xenotransplantation, 27(3):e12601. https://doi.org/10.1111/xen.12601 Lowder L.G., Zhang D., Baltes N., Paul J.W., Tang X., Zheng X., and Qi Y., 2015, A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation, Plant Physiology, 169: 971-985. https://doi.org/10.1104/pp.15.00636 Mollanoori H., and Teimourian S., 2018, Therapeutic applications of CRISPR/Cas9 system in gene therapy, Biotechnology Letters, 40: 907-914. https://doi.org/10.1007/s10529-018-2555-y Niu D., Wei H., Lin L., George H., Wang T., Lee I.H., and Yang L., 2017, Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9, Science, 357(6357): 1303-1307. https://doi.org/10.1126/science.aan4187 Ramakrishna G., Babu P.E., Singh R., and Trehanpati N., 2021, Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids, Hepatology Internationa, 15(6):1309-1317. https://doi.org/10.1007/s12072-021-10237-z Ratan Z.A., Son Y.J., Haidere M.F., Uddin B.M.M., Yusuf M.A., Zaman S.B., and Cho J., 2018, CRISPR-Cas9: a promising genetic engineering approach in cancer research, Therapeutic Advances in Medical Oncology, 10: 1758834018755089. https://doi.org/10.1177/1758834018755089

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==