IJCCR_2024v14n2

International Journal of Clinical Case Reports 2024, Vol.14, No.2, 66-78 http://medscipublisher.com/index.php/ijccr 76 Bamunuarachchige T., Wickramasinghe H., Dissanayaka D., and Wickramarathna N., 2011, Genetic engineering of probiotic microorganisms, In: Liong M.T. ed., Probiotics biology, genetics and health aspects, Springer, Heidelberg, pp.109-138. https://doi.org/10.1007/978-3-642-20838-6_5 Berkhout M., Zoetendal E., Plugge C., and Belzer C., 2022, Use of synthetic communities to study microbial ecology of the gut, Microbiome Research Reports, 1(1): 4. https://doi.org/10.20517/mrr.2021.11 Bober J.R., Beisel C.L., and Nair N.U., 2018, Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications, Annual Review of Biomedical Engineering, 20: 277-300. https://doi.org/10.1146/annurev-bioeng-062117-121019 Clark R., Connors B., Stevenson D., Hromada S., Hamilton J., Amador-Noguez D., and Venturelli O., 2020, Design of synthetic human gut microbiome assembly and function, bioRxiv, 1-30. https://doi.org/10.1101/2020.08.19.241315 Clark R., Connors B., Stevenson D., Hromada S., Hamilton J., Amador-Noguez D., and Venturelli O., 2021, Design of synthetic human gut microbiome assembly and butyrate production, Nature Communications, 12(1): 3254. https://doi.org/10.1038/s41467-021-22938-y Crovesy L., El-Bacha T., and Rosado E.L., 2021, Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity, Food & Function, 12(5): 2161-2170. https://doi.org/10.1039/d0fo02748k De Souza R., Armanhi J., and Arruda P., 2020, From microbiome to traits: designing synthetic microbial communities for improved crop resiliency, Frontiers in Plant Science, 11: 553605. https://doi.org/10.3389/fpls.2020.01179 Diener C., Gibbons S., and Reséndis-Antonio O., 2020, MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota, MSystems, 5(1): 10.1128. https://doi.org/10.1128/mSystems.00606-19 Dou J., and Bennett M., 2018, Synthetic biology and the gut microbiome, Biotechnology Journal, 13(5): 1700159. https://doi.org/10.1002/biot.201700159 Durmusoglu D., Al’Abri I., Williams T., Collins L., Martínez J., and Crook N., 2022, Improving therapeutic protein secretion in the probiotic yeast Saccharomyces boulardii using a multifactorial engineering approach, Microbial Cell Factories, 22(1): 109. https://doi.org/10.1186/s12934-023-02117-y Hemarajata P., and Versalovic J., 2013, Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation, Therapeutic Advances in Gastroenterology, 6(1): 39-51. https://doi.org/10.1177/1756283X12459294 Huang Y., Lin X., Yu S., Chen R., and Chen W., 2022, Intestinal engineered probiotics as living therapeutics: chassis selection, colonization enhancement, gene circuit design, and biocontainment, ACS Synthetic Biology, 11(10): 3134-3153. https://doi.org/10.1021/acssynbio.2c00314 Hwang I., Koh E., Wong A., March J., Bentley W., Lee Y., and Chang M., 2017, Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models, Nature Communications, 8(1): 15028. https://doi.org/10.1038/ncomms15028 Jain S., Chatterjee A., Panwar S., Yadav A., Majumdar R., and Kumar A., 2021, Metabolic engineering approaches for improvement of probiotics functionality, Advances in Probiotics for Sustainable Food and Medicine, 225-240. https://doi.org/10.1007/978-981-15-6795-7_10 Jansma J., Chatziioannou A., Castricum K., Hemert S., and Aidy S., 2023, Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community, MSystems, 8(5): e00332-23. https://doi.org/10.1128/msystems.00332-23 Kaur H., and Ali S., 2022, Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation, Food & Function, 13(14): 7423-7447. https://doi.org/10.1039/d2fo00911k

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==