CGE2025v13n1

Cancer Genetics and Epigenetics, 2025, Vol.13, No.1, 41-49 http://medscipublisher.com/index.php/cge 49 Wang H., and Sun W., 2017, CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation, Cancer Letters, 385: 137-143. https://doi.org/10.1016/j.canlet.2016.10.033 Wang, X., Lomas C., Tycon M., Betts C., and Weaver S., 2017, Abstract 2431: single cell gene expression profiling in breast cancer cells with the Her2/neu gene knockout by CRISPR-Cas9, Cancer Research, 77(13_Supplement): 2431-2431. https://doi.org/10.1158/1538-7445.AM2017-2431 Wang X., Lomas C., Tycon M., Lam R., and Weaver S., 2017, ID: 1070 single-cell gene expression profiling in breast cancer cells with the HER2/neu gene knockout by CRISPR-Cas9, Biomedical Research and Therapy, 4: 152-152. https://doi.org/10.15419/BMRAT.V4IS.344 Wang L.T., 2024, Genetic mechanisms and clinical significance of HPV16/18 specific variants in cervical cancer, International Journal of Clinical Case Reports, 14(5): 242-252 http://doi.org/10.5376/ijccr.2024.14.0025 Wei T., Cheng Q., Farbiak L., Anderson D., Langer R., and Siegwart D., 2020, Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing, ACS Nano, 14(8): 9243-9262. https://doi.org/10.1021/acsnano.0c04707 Wen W., and Zhang X.B., 2022, CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells, Experimental Hematology, 110: 13-19. https://doi.org/10.1016/j.exphem.2022.03.002

RkJQdWJsaXNoZXIy MjQ4ODYzNA==