Cancer Genetics and Epigenetics, 2025, Vol.13, No.1, 41-49 http://medscipublisher.com/index.php/cge 48 Balon K., Sheriff A., Jacków J., and Łaczmański Ł., 2022, Targeting cancer with CRISPR/Cas9-based therapy, International Journal of Molecular Sciences, 23(1): 573. https://doi.org/10.3390/ijms23010573 Chen M.J., Mao A.W., Xu M., Weng Q.Y., Mao J.T., and Ji J.S., 2019, CRISPR-Cas9 for cancer therapy: opportunities and challenges, Cancer Letters, 447: 48-55. https://doi.org/10.1016/j.canlet.2019.01.017 Chen Y.N., and Zhang Y.M., 2018, Application of the CRISPR/Cas9 system to drug resistance in breast cancer, Advanced Science, 5(6): 1700964. https://doi.org/10.1002/advs.201700964 Chen T., 2024, Single-cell RNA sequencing reveals new insights into tumor heterogeneity, Cancer Genetics and Epigenetics, 12(1): 55-65. https://doi.org/10.5376/cge.2024.12.0007 Ferraro E., Safonov A., Chen Y., White C., Marra A., Ahmed M., Acevedo B., Dang C., Modi S., Solit D., Norton L., Robson M., Reis-Filho J., Chandarlapaty S., and Razavi P., 2023, Abstract P4-02-01: efficacy of HER2 ADCs against HER2 inhibitor resistance alterations in the PI3K and MAPK pathways in HER2-positive breast cancer, Cancer Research, 83(5_Supplement): P4-02-01. https://doi.org/10.1158/1538-7445.sabcs22-p4-02-01 Ghaemi A., Bagheri E., Abnous K., Taghdisi S.M., Ramezani M., and Alibolandi M., 2020, CRISPR-cas9 genome editing delivery systems for targeted cancer therapy, Life Sciences, 267: 118969. https://doi.org/10.1016/j.lfs.2020.118969 Guo C.T., Ma X.T., Gao F., and Guo Y.X., 2023, Off-target effects in CRISPR/Cas9 gene editing, Frontiers in Bioengineering and Biotechnology, 11: 1143157. https://doi.org/10.3389/fbioe.2023.1143157 Hazafa A., Mumtaz M., Farooq M., Bilal S., Chaudhry S., Firdous M., Naeem H., Ullah M., Yameen M., Mukhtiar M., and Zafar F., 2020, CRISPR/Cas9: a powerful genome editing technique for the treatment of cancer cells with present challenges and future directions, Life Sciences, 263: 118525-118525. https://doi.org/10.1016/j.lfs.2020.118525 Li H., Wang J., Yi Z., Li C., Wang H., Zhang J., Wang T., Nan P., Lin F., Xu D., Qian H., and Ma F., 2021, CDK12 inhibition enhances sensitivity of HER2+breast cancers to HER2-tyrosine kinase inhibitor via suppressing PI3K/AKT, European Journal of Cancer, 145: 92-108. https://doi.org/10.1016/j.ejca.2020.11.045 Liu B., Saber A., and Haisma H.I., 2019, CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment, Drug Discovery Today, 24(4): 955-970. https://doi.org/10.1016/j.drudis.2019.02.011 Liu J., Tseng D., Hooda J., Brown D., Lee A., and Oesterreich S., 2024, Abstract PO4-14-12: predicting response to HER2 tyrosine kinase inhibitors and antibody drug conjugates in HER2 mutant invasive lobular carcinoma using CRISPR/Cas9 knock-in cell lines and patient-derived organoids, Cancer Research, 84(9_Supplement): PO4-14-12. https://doi.org/10.1158/1538-7445.sabcs23-po4-14-12 Misra G., Qaisar S., and Singh P., 2023, CRISPR based therapeutic targeting of signaling pathways in breast cancer, Biochimica et biophysica acta, Molecular Basis of Disease, 1870(1): 166872. https://doi.org/10.1016/j.bbadis.2023.166872 Rabaan A.A., AlSaihati H., Bukhamsin R., Bakhrebah M., Nassar M., Alsaleh A., Alhashem Y., Bukhamseen A., Al-Ruhimy K., Alotaibi M., Alsubki, R., Alahmed, H., Al-Abdulhadi S., Alhashem F., Alqatari A., Alsayyah A., Farahat R., Abdulal R., Al-Ahmed A., Imran M., and Mohapatra R., 2023, Application of CRISPR/Cas9 technology in cancer treatment: a future direction, Current Oncology, 30(2): 1954-1976. https://doi.org/10.3390/curroncol30020152 Rojhannezhad M., Mowla S., Rojhannezhad M., Azad F., Kichi Z., Arab M., and Soltani B., 2024, Gene editing for unraveling the regulatory role of a HER2-associated enhancer with lncRNA GAS5 and related genes in breast cancer cells, Journal of Advanced Immunopharmacology, 10: 13. https://doi.org/10.5812/jai-142988 Sabit H., Abdel-Ghany S., Tombuloglu H., Çevik E., Alqosaibi A., Almulhim F., and Al-Muhanaa A., 2021, New insights on CRISPR/Cas9-based therapy for breast cancer, Genes and Environment, 43(1): 15. https://doi.org/10.1186/s41021-021-00188-0 Sharma G., Sharma A., Bhattacharya M., Lee S., and Chakraborty C., 2020, CRISPR-cas9: a preclinical and clinical perspective for the treatment of human diseases, Molecular Therapy, 29(2): 571-586. https://doi.org/10.1016/J.YMTHE.2020.09.028 Singh D.D., Verma R., Tripathi S.K., Sahu R., Trivedi P., and Yadav D., 2021, Breast cancer transcriptional regulatory network Reprogramming by using the CRISPR/Cas9 system: an oncogenetics perspective, Current Topics in Medicinal Chemistry, 21(31): 2800-2813. https://doi.org/10.2174/1568026621666210902120754 Tiwari P., Ko T., Dubey R., Chouhan M., Tsai L., Singh H., Chaubey K., Dayal D., Chiang C., and Kumar S., 2023, CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics, Frontiers in Molecular Biosciences, 10: 1214489. https://doi.org/10.3389/fmolb.2023.1214489 Valashedi M.R., Roushandeh A.M., Tomita K., Kuwahara Y., Pourmohammadi-Bejarpasi Z., Kozani P., Sato T., and Roudkenar M., 2022, CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability, Life Sciences, 304: 120704. https://doi.org/10.1016/j.lfs.2022.120704
RkJQdWJsaXNoZXIy MjQ4ODYzNA==