Cancer Genetics and Epigenetics, 2025, Vol.13, No.1, 32-40 http://medscipublisher.com/index.php/cge 39 Bao C., An N., Xie H., Xu L., Zhou B., Luo J., Huang W., and Huang J., 2021, Identifying potential neoantigens for cervical cancer immunotherapy using comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer, Frontiers in Oncology, 11: 672386. https://doi.org/10.3389/fonc.2021.672386 Barra F., Lorusso D., Maggiore L., Ditto A., Bogani G., Raspagliesi F., and Ferrero S., 2017, Investigational drugs for the treatment of cervical cancer, Expert Opinion on Investigational Drugs, 26(4): 389-402. https://doi.org/10.1080/13543784.2017.1302427 Berger M.F., and Mardis E.R., 2018, The emerging clinical relevance of genomics in cancer medicine, Nature Reviews Clinical Oncology, 15(6): 353-365. https://doi.org/10.1038/s41571-018-0002-6 Broquet C., Vassilakos P., Nsangou F., Kenfack B., Noubom M., Tincho E., Jeannot E., Wisniak A., and Petignat P., 2022, Utility of extended HPV genotyping for the triage of self-sampled HPV-positive women in a screen-and-treat strategy for cervical cancer prevention in cameroon: a prospective study of diagnostic accuracy, BMJ Open, 12(12): e057234. https://doi.org/10.1136/bmjopen-2021-057234 Crowley F.J., O’Cearbhaill R.E., and Collins D.C., 2021, Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer, Cancer Treatment Reviews, 98: 102225. https://doi.org/10.1016/j.ctrv.2021.102225 Diefenbach D., Greten H.J., and Efferth T., 2020, Genomic landscape analyses in cervical carcinoma and consequences for treatment, Current Opinion in Pharmacology, 54: 142-157. https://doi.org/10.1016/j.coph.2020.09.013 Elias M.H., Das S., and Hamid N., 2023, Candidate genes and pathways in cervical cancer: a systematic review and integrated bioinformatic analysis, Cancers, 15(3): 853. https://doi.org/10.3390/cancers15030853 Ferrall L., Lin K.Y., Roden R.B.S., Hung C.F., and Wu T.C., 2021, Cervical cancer immunotherapy: facts and hopes, Clinical Cancer Research, 27(18): 4953-4973. https://doi.org/10.1158/1078-0432.CCR-20-2833 Friedman C.F., Ravichandran V., Miller K., Vanderbilt C., Zhou Q., Iasonos A., Vivek M., Mishra P., Leitao M., Broach V., Sonoda Y., Kyi C., Zamarin D., O’Cearbhaill R., Konner J., Berger M., Weigelt B., Boroujeni A., Park K., Aghajanian C., Solit D., and Donoghue M., 2023, Assessing the genomic landscape of cervical cancers: clinical opportunities and therapeutic targets, Clinical Cancer Research, 29(22): 4660-4668. https://doi.org/10.1158/1078-0432.CCR-23-1078 Gupta S.M., and Mania-Pramanik J., 2019, Molecular mechanisms in progression of HPV-associated cervical carcinogenesis, Journal of Biomedical Science, 26(1): 28. https://doi.org/10.1186/s12929-019-0520-2 Hirose S., Murakami N., Takahashi K., Kuno I., Takayanagi D., Asami Y., Matsuda M., Shimada Y., Yamano S., Sunami K., Yoshida K., Honda T., Nakahara T., Watanabe T., Komatsu M., Hamamoto R., Kato M., Matsumoto K., Okuma K., Kuroda T., Okamoto A., Itami J., Kohno T., Kato T., Shiraishi K., and Yoshida H., 2019, Genomic alterations in STK11 can predict clinical outcomes in cervical cancer patients, Gynecologic Oncology, 156(1): 203-210. https://doi.org/10.1016/j.ygyno.2019.10.022 Huang X., He M., Peng H., Tong C., Liu Z., Zhang X., Shao Y., Zhu D., Zhang J., Yin J., Yang F., and Lan C., 2021, Genomic profiling of advanced cervical cancer to predict response to programmed death-1 inhibitor combination therapy: a secondary analysis of the CLAP trial, Journal for Immunotherapy of Cancer, 9(5): e002223. https://doi.org/10.1136/jitc-2020-002223 Kim Y.N., Lee K., Park E., Park J., Lee Y.J., Nam E.J., Kim S., Kim S., Kim Y., and Lee J., 2023, Comprehensive genomic and immunohistochemical profiles and outcomes of immunotherapy in patients with recurrent or advanced cervical cancer, Frontiers in Oncology, 13: 1156973. https://doi.org/10.3389/fonc.2023.1156973 Koel M., Võsa U., Jõeloo M., Läll K., Gualdo N.P., Laivuori H., Lemmelä S., Daly M., Palta P., Mägi R., and Laisk T., 2023, GWAS meta-analyses clarify the genetics of cervical phenotypes and inform risk stratification for cervical cancer, Human Molecular Genetics, 32(12): 2103-2116. https://doi.org/10.1093/hmg/ddad043 Kori M., and Arga K.Y., 2018, Potential biomarkers and therapeutic targets in cervical cancer: insights from the meta-analysis of transcriptomics data within network biomedicine perspective, PLoS One, 13(7): e0200717. https://doi.org/10.1371/journal.pone.0200717 Kuno I., Takayanagi D., Asami Y., Murakami N., Matsuda M., Shimada Y., Hirose S., Kato M., Komatsu M., Hamamoto R., Okuma K., Kohno T., Itami J., Yoshida H., Shiraishi K., and Kato T., 2021, TP53 mutants and non-HPV16/18 genotypes are poor prognostic factors for concurrent chemoradiotherapy in locally advanced cervical cancer, Scientific Reports, 11(1): 19261. https://doi.org/10.1038/s41598-021-98527-2 Kuno I., Takayanagi D., Yoshida H., Hirose S., Murakami N., Uno M., Ishikawa M., Matsuda M., Asami Y., Shimada Y., Okuma K., Kohno T., Itami J., Shiraishi K., and Kato T., 2019, Impact of genomic alterations and HPV genotypes on clinical outcomes of Japanese patients with locally advanced cervical cancer, Annals of Oncology, 30: ix83. https://doi.org/10.1093/annonc/mdz426.017
RkJQdWJsaXNoZXIy MjQ4ODYzNA==