Cancer Genetics and Epigenetics, 2025, Vol.13, No.1, 21-31 http://medscipublisher.com/index.php/cge 30 Kypta R., and Waxman J., 2012, Wnt/β-catenin signalling in prostate cancer, Nature Reviews Urology, 9: 418-428. https://doi.org/10.1038/nrurol.2012.116 Lu K., Yu M.Y., and Chen Y., 2020, Non-coding RNAs regulating androgen receptor signaling pathways in prostate cancer, Clinica Chimica Acta,, 513: 57-63. https://doi.org/10.1016/j.cca.2020.11.027 Li Y., Wang S.Q., and Li X.J., 2024, Clinical validation of non-invasive biomarkers in colon cancer diagnosis, Cancer Genetics and Epigenetics, 12(4): 194-209. https://doi.org/10.5376/cge.2024.12.0021 Ma S., Quan P., Yu C., Fan X., Yang S., Jia W., Zhang L., Wang F., Liu F., Yang L., Qin W., and Yang X., 2021, PHLDA3 exerts an antitumor function in prostate cancer by down-regulating Wnt/β-catenin pathway via inhibition of Akt, Biochemical and Biophysical Research Communications, 571: 66-73. https://doi.org/10.1016/j.bbrc.2021.07.038 Maekawa S., Takata R., and Obara W., 2024, Molecular mechanisms of prostate cancer development in the precision medicine era: a comprehensive review, Cancers, 16(3):523. https://doi.org/10.3390/cancers16030523 Mateo J., Boysen G., Barbieri C., Bryant H., Castro E., Nelson P., Olmos D., Pritchard C., Rubin M., and De Bono J., 2017, DNA Repair in Prostate Cancer: Biology and Clinical Implications, European Urology, 71(3): 417-425. https://doi.org/10.1016/j.eururo.2016.08.037 Mateo J., McKay R., Abida W., Aggarwal R., Alumkal J., Alva A., Feng F., Gao X., Graff J., Hussain M., Karzai F., Montgomery B., Oh W., Patel V., Rathkopf D., Rettig M., Schultz N., Smith M., Solit D., Sternberg C., Van Allen E., VanderWeele D., Vinson J., Soule H., Chinnaiyan A., Small E., Simons J., Dahut W., Miyahira A., and Beltran H., 2020, Accelerating precision medicine in metastatic prostate cancer, Nature Cancer, 1: 1041-1053. https://doi.org/10.1038/s43018-020-00141-0 Nelson P.S., 2012, Molecular states underlying androgen receptor activation: a framework for therapeutics targeting androgen signaling in prostate cancer, Journal of Clinical Oncology, 30(6): 644-646. https://doi.org/10.1200/JCO.2011.39.1300 Neophytou C., Panagi M., Stylianopoulos T., and Papageorgis P., 2021, The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities, Cancers, 13(9): 2053. https://doi.org/10.3390/cancers13092053 Nowacka-Zawisza M., and Wiśnik E., 2017, DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review), Oncology Reports, 38(5): 2587-2596. https://doi.org/10.3892/or.2017.5972 Orafidiya F., Deng L., Bevan C.L., and Fletcher C.E., 2022, Crosstalk between long non coding RNAs, microRNAs and DNA damage repair in prostate cancer: new therapeutic opportunities?, Cancers, 14(3): 755. https://doi.org/10.3390/cancers14030755 Palicelli A., Croci S., Bisagni A., Zanetti E., De Biase D., Melli B., Sanguedolce F., Ragazzi M., Zanelli M., Chaux A., Canete-Portillo S., Bonasoni M., Soriano A., Ascani S., Zizzo M., Ruiz C., De Leo A., Giordano G., Landriscina M., Carrieri G., Cormio L., Berney D., Gandhi J., Copelli V., Bernardelli G., Santandrea G., and Bonacini M., 2021, What do we have to know about pd-l1 expression in prostate cancer? a systematic literature review, part 3: PD-L1, intracellular signaling pathways and tumor microenvironment, International Journal of Molecular Sciences, 22(22): 12330. https://doi.org/10.3390/ijms222212330 Pisano C., Tucci M., Di Stefano R., Turco F., Scagliotti G., Di Maio M., and Buttigliero C., 2020, Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: current and future clinical implications, Critical Reviews in Oncology/Hematology, 157: 103185. https://doi.org/10.1016/j.critrevonc.2020.103185 Pungsrinont T., Kallenbach J., and Baniahmad A., 2021, Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer, International Journal of Molecular Sciences, 22(20): 11088. https://doi.org/10.3390/ijms222011088 Ramalingam S., Ramamurthy V.P., and Njar V.C.O., 2017, Dissecting major signaling pathways in prostate cancer development and progression: mechanisms and novel therapeutic targets, The Journal of Steroid Biochemistry and Molecular Biology, 166: 16-27. https://doi.org/10.1016/j.jsbmb.2016.07.006 Sarker D., Reid A., Yap T., and De Bono J., 2009, Targeting the PI3K/AKT pathway for the treatment of prostate cancer, Clinical Cancer Research, 15: 4799-4805. https://doi.org/10.1158/1078-0432.CCR-08-0125 Shorning B.Y., Dass M.S., Smalley M.J., and Pearson H., 2020, The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling, International Journal of Molecular Sciences, 21(12): 4507. https://doi.org/10.3390/ijms21124507 Shtivelman E., Beer T., and Evans C., 2014, Molecular pathways and targets in prostate cancer, Oncotarget, 5: 7217-7259. https://doi.org/10.18632/ONCOTARGET.2406 Sorrentino C., and Di Carlo E., 2023, Molecular targeted therapies in metastatic prostate cancer: recent advances and future challenges, Cancers, 15(11): 2885. https://doi.org/10.3390/cancers15112885 Sugiura M., Sato H., Kanesaka M., Imamura Y., Sakamoto S., Ichikawa T., and Kaneda A., 2020, Epigenetic modifications in prostate cancer, International Journal of Urology, 28(2): 140-149. https://doi.org/10.1111/iju.14406
RkJQdWJsaXNoZXIy MjQ4ODYzNA==