CGE_2024v12n6

Cancer Genetics and Epigenetics 2024, Vol.12, No.6, 358-367 http://medscipublisher.com/index.php/cge 366 Chen L.L., Zhou Y., and Li H.J., 2018, LncRNA, miRNA and lncRNA-miRNA interaction in viral infection, Virus Research, 257: 25-32. https://doi.org/10.1016/j.virusres.2018.08.018 PMID: 30165080 Dai X., Kaushik A.C., and Zhang J., 2019, The emerging role of major regulatory RNAs in cancer control, Frontiers in Oncology, 9: 920. https://doi.org/10.3389/fonc.2019.00920 Dexheimer P.J., and Cochella L., 2020, MicroRNAs: from mechanism to organism, Frontiers in Cell and Developmental Biology, 8: 409. https://doi.org/10.3389/fcell.2020.00409 Ding L., Lan Z., Xiong X., Ao H., Feng Y., Gu H., Yu M., and Cui Q., 2018, The dual role of microRNAs in colorectal cancer progression, International Journal of Molecular Sciences, 19(9): 2791. https://doi.org/10.3390/ijms19092791 Fang C., Qiu S., Sun F., Li W., Wang Z., Yue B., Wu X., and Yan D., 2017, Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA, Cancer Letters, 410: 50-62. https://doi.org/10.1016/j.canlet.2017.09.012 Khan S., Jha A., Panda A., and Dixit A., 2021, Cancer-associated circRNA-miRNA-mRNA Regulatory networks: a meta-analysis, Frontiers in Molecular Biosciences, 8: 671309. https://doi.org/10.3389/fmolb.2021.671309 Li D., She J., Hu X., Zhang M., Sun R., and Qin S., 2021, The ELF3-regulated lncRNA UBE2CP3 is over-stabilized by RNA-RNA interactions and drives gastric cancer metastasis via miR-138-5p/ITGA2 axis, Oncogene, 40(35): 5403-5415. https://doi.org/10.1038/s41388-021-01948-6 Li D., Wang J., Zhang M., Hu X., She J., Qiu X., Zhang X., Xu L., Liu Y., and Qin S., 2019, LncRNA MAGI2-AS3 is regulated by BRD4 and promotes gastric cancer progression via maintaining ZEB1 overexpression by sponging miR-141/200a, Molecular Therapy-Nucleic Acids, 19: 109-123. https://doi.org/10.1016/j.omtn.2019.11.003 Li J., Zhao L.M., Zhang C., Li M., Gao B., Hu X.H., Cao J., and Wang G.Y., 2020, The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p, Oncology research, 28(1): 51. https://doi.org/10.3727/096504019X15619783964700 Liang Y., Song X., Li Y., Chen B., Zhao W., Wang L., Zhang H., Liu Y., Han D., Zhang N., Ma T., Wang Y., Ye F., Luo D., Li X., and Yang Q., 2020, LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis, Molecular Cancer, 19: 1-20. https://doi.org/10.1186/s12943-020-01206-5 Lin J., Shi Z., Yu Z., and He Z., 2018, LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A, Biomedicine & Pharmacotherapy, 98: 433-439. https://doi.org/10.1016/j.biopha.2017.12.058 Liu J., Zhan Y., Wang J., Wang J., Guo J., and Kong D., 2020, lncRNA-SNHG17 promotes colon adenocarcinoma progression and serves as a sponge for miR-375 to regulate CBX3 expression, American Journal of Translational Research, 12(9): 5283-5295. O'Brien J., Hayder H., Zayed Y., and Peng C., 2018, Overview of microRNA biogenesis, mechanisms of actions, and circulation, Frontiers in Endocrinology, 9: 402. https://doi.org/10.3389/fendo.2018.00402 Ratti M., Lampis A., Ghidini M., Salati M., Mirchev M.B., Valeri N., and Hahne J.C., 2020, MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside, Targeted Oncology, 15: 261-278. https://doi.org/10.1007/s11523-020-00717-x Rokavec M., Horst D., and Hermeking H., 2017, Cellular model of colon cancer progression reveals signatures of mRNAs, miRNA, lncRNAs, and epigenetic modifications associated with metastasis, Cancer Research, 77(8): 1854-1867. https://doi.org/10.1158/0008-5472.CAN-16-3236 Si Z., Yu L., Jing H., Wu L., and Wang X., 2021, Oncogenic lncRNA ZNF561-AS1 is essential for colorectal cancer proliferation and survival through regulation of miR-26a-3p/miR-128-5p-SRSF6 axis, Journal of Experimental & Clinical Cancer Research, 40: 1-13. https://doi.org/10.1186/s13046-021-01882-1 Su K., Wang N., Shao Q., Liu H., Zhao B., and Ma S., 2021, The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression, Biomedicine & Pharmacotherapy, 137: 111389. https://doi.org/10.1016/j.biopha.2021.111389 Sun C., Shen C., Zhang Y., and Hu C., 2021, LncRNA ANRIL negatively regulated chitooligosaccharide-induced radiosensitivity in colon cancer cells by sponging miR-181a-5p. Advances in Clinical and Experimental Medicine, 30(1): 55-65. https://doi.org/10.17219/acem/128370 Volovat S.R., Volovăț C., Hordila I., Hordila D.A., Mireștean C.C., Miron O.T., Lungulescu C., Scripcariu D., Stolniceanu C., Konsoulova-Kirova A., Grigorescu C., Ștefănescu C., Volovat C., and Augustin I., 2020, MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review, Frontiers in Oncology, 10: 526850. https://doi.org/10.3389/fonc.2020.526850 Tam C., Wong J.H., Tsui S.K., Zuo T., Chan T.F., and Ng T.B., 2019, LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years, Applied Microbiology and Biotechnology, 103: 4649-4677. https://doi.org/10.1007/s00253-019-09837-5

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==