CGE_2024v12n6

Cancer Genetics and Epigenetics 2024, Vol.12, No.6, 306-316 http://medscipublisher.com/index.php/cge 314 Das S., and Johnson D., 2019, Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors, Journal for Immunotherapy of Cancer, 7(1): 306. https://doi.org/10.1186/s40425-019-0805-8 PMID: 31730012 PMCID: PMC6858629 Farshbafnadi M., Khoshbin A., and Rezaei N., 2021, Immune checkpoint inhibitors for triple-negative breast cancer: from immunological mechanisms to clinical evidence, International Immunopharmacology, 98: 107876. https://doi.org/10.1016/j.Intimp.2021.107876 Gao H., Kida K., Cohen E.N., Alexander A., Lim B., Parker C., Tin S., Valero V., Tripathy D., Reuben A., Ueno N., and Reuben J.M., 2020, Abstract p3-09-12: Peripheral t cell clonality and exhaustion as novel biomarkers for Anti-Pd-1 (Pembrolizumab) maintenance therapy in patients with metastatic inflammatory breast cancer (mIBC) and Non-Ibc triple negative breast cancer (mTNBC), Cancer Research, 80(4_Supplement): P3-09-12. https://doi.org/10.1158/1538-7445.sabcs19-p3-09-12 Garrido-Castro A., Keenan T., Li T.Y., Lange P., Callahan C., Guerriero J., Tayob,N., Anderson L., Yam C., Daniel B.R., Carey L.A., Nanda R., Winer E.P., Mittendorf E.A., and Tolaney S.M., 2021, Saci-Io TNBC: randomized phase ii trial of Sacituzumab govitecan (Sg)+/-Pembrolizumab in Pd-l1-metastatic triple-negative breast cancer (mTNBC), Journal of Clinical Oncology, (2021): TPS1106. https://doi.org/10.1200/JCO.2021.39.15_SUPPL.TPS1106 Guo S., Gu D.N., and Chen X., 2024, Development and influencing factors of female cancers, Cancer Genetics and Epigenetics, 12(1): 27-36. https://doi.org/10.5376/cge.2024.12.0004 Karn T., Denkert C., Rey J., Webe K., Holtrich U., Hanusch C., Sinn B., Jank P., Huober J., Blohmer J., Schmitt W.D., van Mackelenbergh M., Schem C., Stickeler E., Jackisch C., Untch M., Schneeweiss A., and Loibl S., 2022, Low TMB as predictor for additional benefit from neoadjuvant immune checkpoint inhibition in triple-negative breast cancer, Journal of Clinical Oncology, (2022): 581. https://doi.org/10.1200/jco.2022.40.16_suppl.581 Karn T., Denkert C., Weber K., Holtrich U., Hanusch C., Sinn B.V., Higgs B.W., Jank P., Sinn H.P., Huober J., Becker C., Blohmer J.U., Marmé F., Schmitt W., Wu S., Mackelenbergh M., Müller V., Schem C., Stickeler E., Fasching P., Jackisch C., Untch M., Schneeweiss A., and Loibl S., 2020, Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early tnbc in geparnuevo, Annals of Oncology, 31(9): 1216-1222. https://doi.org/10.1016/j.annonc.2020.05.015 PMID: 32461104 Khan M., Du K.P., Ai M.L., Wang B.Y., Lin J., Ren A.B., Chen C.C., Huang Z., Qiu W.Z., Yuan Y.W., and Tian Y.H., 2023, Pd-l1 expression as biomarker of efficacy of PD-1/PD-l1 checkpoint inhibitors in metastatic triple negative breast cancer: a systematic review and meta-analysis, Frontiers in Immunology, 14: 1060308. https://doi.org/10.3389/fimmu.2023.1060308 PMID: 36949944 PMCID: PMC10027008 Kyte J.A., Røssevold A.H., Andresen N., Bjerre C.A., Gilje B., Jakobsen E.H., Raj S.X., Falk R., Borgen E., Jahr T., Garred Ø., Lømo J., Mathiesen R., and Naume B., 2023, Abstract PD11-11: PD11-11 results from alice-atezolizumab combined with immunogenic chemotherapy in patients with metastatic triple negative breast cancer, a randomized phase Iib trial, Cancer Research, 83(5_Supplement): PD11-11. https://doi.org/10.1158/1538-7445.sabcs22-pd11-11 Li Q., Zhang Q.Y., Zhang Y., Ouyang Q.C., Liu Q., Sun T., Ye F., Zhang B.C., Xu T., Xia S., Zhang K., Zhang B.Y., and Xu B.H., 2023, Abstract Pd11-10: Pd11-10 efficacy, safety, and tolerability of Kn046 (an anti-PD-l1/CTLA-4 bispecific antibody) in combination with nab-paclitaxel in metastatic triple-negative breast cancer (mTNBC): final results of the phase Ii trial, Cancer Research, 83(5_Supplement): PD11-10. https://doi.org/10.1158/1538-7445.sabcs22-pd11-10 Liu L.N., Wang Y.H., Miao L., Liu Q., Musetti S., Li J., and Huang L., 2018, Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer, molecular therapy: The Journal of The American Society of Gene Therapy, 26(1): 45-55. https://doi.org/10.1016/j.ymthe.2017.10.020 PMID: 29258739 PMCID: PMC5763160 Majidpoor J., and Mortezaee K., 2021, The efficacy of PD-1/PD-l1 blockade in cold cancers and future perspectives, Clinical Immunology, 226: 108707. https://doi.org/10.1016/j.clim.2021.108707 PMID: 33662590 Mittendorf E.A., Zhang H., Barrios C., Saji S., Jung K., Hegg R., Koehler A., Sohn J., Iwata H., Telli M., Ferrario C., Punie k., Penault-Llorca f., Patel s., Duc a., Liste-Hermoso m., Maiya v., Molinero L., Chui S., and Harbeck N., 2020, Neoadjuvant atezolizumab in combination with sequential Nab-Paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial, The Lancet, 396(10257): 1090-1100 https://doi.org/10.1016/S0140-6736(20)31953-X PMID: 32966830 Morehouse C., Abdullah S., Gao C., Dar M., Ranade K., and Higgs B., 2019, Early incidence of immune-related adverse events (irAEs) predicts efficacy in patients (pts) with solid tumors treated with immune-checkpoint inhibitors (ICIs), Journal of Clinical Oncology, (2019): 2563. https://doi.org/10.1200/JCO.2019.37.15_SUPPL.2563

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==