Cancer Genetics and Epigenetics 2024, Vol.12, No.5, 234-253 http://medscipublisher.com/index.php/cge 252 Tintelnot J., Ristow I., Sauer M., Simnica D., Schultheiß C., Scholz R., Goekkurt E., von Wenserski L., Willscher E., Paschold L., Lorenzen S., Riera-Knorrenschild J., Depenbusch R., Ettrich T.J., Drfel S., Al-Batran S.E., Karthaus M., Pelzer U., Hinke A., Bauer M., Massa C., Seliger B., Wickenhauser C., Bokemeyer C., Hegewisch-Becker S., Binder M., Binder M., and Stein A., 2022, Translational analysis and final efficacy of the AVETUX trial - Avelumab, cetuximab and FOLFOX in metastatic colorectal cancer, Frontiers in Oncology, 12: 993611. https://doi.org/10.3389/fonc.2022.993611 PMID: 36605436 PMCID: PMC9808039 Trebeschi S., Drago S.G., Birkbak N.J., Kurilova I., Cǎlin A.M., Delli Pizzi A., Lalezari F., Lambregts D.M.J., Rohaan M.W., Parmar C., Rozeman E.A., Hartemink K.J., Swanton C., Haanen J.B.A.G., Blank C.U., Smit E.F., Beets-Tan R.G.H., and Aerts H.J.W.L., 2019, Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers, Annals of Oncology, 30(6): 998-1004. https://doi.org/10.1093/annonc/mdz108 Trimaglio G., Tilkin-Mariamé A.F., Feliu V., Lauzéral-Vizcaino F., Tosolini M., Valle C., Ayyoub M., Neyrolles O., Vergnolle N., Rombouts Y., and Devaud C., 2020, Colon-specific immune microenvironment regulates cancer progression versus rejection, Oncoimmunology, 9(1): 1790125. https://doi.org/10.1080/2162402X.2020.1790125 Triozzi P.L., Stirling E.R., Song Q., Westwood B., Kooshki M., Forbes M.E., Holbrook B.C., Cook K.L., Alexander-Miller M.A., Miller L.D., Zhang W., and Soto-Pantoja D.R., 2022, Circulating immune bioenergetic, metabolic, and genetic signatures predict melanoma patients' response to Anti-PD-1 immune checkpoint blockade, Clinical Cancer Research, 28(6): 1192-1202. https://doi.org/10.1158/1078-0432.CCR-21-3114 PMID: 35284940 PMCID: PMC9179080 Tsuchiya H., and Shiota G., 2021, Immune evasion by cancer stem cells, Regenerative Therapy, 17: 20-33. https://doi.org/10.1016/j.reth.2021.02.006 Visalakshan R.M., Lowrey M.K., Sousa M.G.C., Helms H.R., Samiea A., Schutt C.E., Moreau J.M., and Bertassoni L.E., 2023, Opportunities and challenges to engineer 3D models of tumor-adaptive immune interactions, Frontiers in Immunology 14: 1162905. https://doi.org/10.3389/fimmu.2023.1162905 Wang H., Tian T., and Zhang J.H., 2021, Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): from mechanism to therapy and prognosis, International Journal of Molecular Sciences, 22(16): 8470. https://doi.org/10.3390/ijms22168470 PMID: 34445193 PMCID: PMC8395168 Wang J., Mamuti M., and Wang H., 2020a, Therapeutic vaccines for cancer immunotherapy, ACS Biomaterials Science & Engineering, 6(11): 6036-6052. https://doi.org/10.1021/acsbiomaterials.0c01201 Wang R., Lian J., Wang X., Pang X.Y., Xu B.J., Tang S.L., Shao J.Y., and Lu H.B., 2023, Intrinsic resistance and efficacy of immunotherapy in microsatellite instability-high colorectal cancer: A systematic review and meta-analysis, Biomolecules & Biomedicine, 23(2): 198-208. https://doi.org/10.17305/bjbms.2022.8286 Wang S.X., He Z., Wang X., Li H., and Liu X.S., 2019, Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction, eLife, 8: e49020. https://doi.org/10.7554/eLife.49020.036 Wang X.Y., Duanmu J.Z., Fu X.R., Li T.Y., and Jiang Q.G., 2020b, Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment, Journal of Translational Medicine, 18: 1-4. https://doi.org/10.1186/s12967-020-02491-w PMID: 32859214 PMCID: PMC7456375 Wu Y.Z., Yi M., Niu M.K., Mei Q., and Wu K.M., 2022, Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy, Molecular Cancer, 21(1): 184. Xiao W., Ibrahim M.L., Redd P.S., Klement J.D., Lu C.W., Yang D.F., Savage N.M., and Liu K.B., 2019, Loss of fas expression and function is coupled with colon cancer resistance to immune checkpoint inhibitor immunotherapy, Molecular Cancer Research, 17(2): 420-430. https://doi.org/10.1158/1541-7786.MCR-18-0455 PMID: 30429213 PMCID: PMC6359951 Xu X.J., Lv, J., Guo F., Li J., Jia Y.T., Jiang D., Wang N., Zhang C., Kong L.Y., Liu Y.B., Zhang Y.N., Lv J., and Li Z.X., 2020, Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway, Frontiers in Microbiology, 11: 814. https://doi.org/10.3389/fmicb.2020.00814 Yajima T., Hoshino K., Muranushi R., Mogi A., Onozato R., Yamaki E., Kosaka T., Tanaka S., Shirabe K., Yoshikai Y., and Kuwano H.T., 2019, Fas/FasL signaling is critical for the survival of exhausted antigen-specific CD8(+) T cells during tumor immune response, Molecular Immunology, 107: 97-105. https://doi.org/10.1016/j.molimm.2019.01.014 PMID: 30711908 Yan W., Qiu L., Yang M.L., Xu, A.R., Ma M.Q., Yuan Q.Z., Ma X.C., Liang W.J., Li X.N., and Lu Y.X., 2023, CXCL10 mediates CD8(+) T cells to facilitate vessel normalization and improve the efficacy of cetuximab combined with PD-1 checkpoint inhibitors in colorectal cancer, Cancer Letters, 567: 216263. https://doi.org/10.1016/j.canlet.2023.216263 Yang W.J., Zhu G.Z., Wang S., Yu, G.C., Yang Z., Lin L.S., Zhou Z.J., Liu Y.J., Dai Y.H., Zhang F.W., Shen Z.Y., Liu Y., He Z.M., Lau J., Niu G., Kiesewetter D.O., Hu S., Chen X.Y., 2019, In situ dendritic cell vaccine for effective cancer immunotherapy, ACS Nano, 13(3): 3083-3094. https://doi.org/10.1021/acsnano.8b08346
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==