CGE_2024v12n3

Cancer Genetics and Epigenetics 2024, Vol.12, No.3, 144-156 http://medscipublisher.com/index.php/cge 156 Sailer V., Eng K., Zhang T., Bareja R., Pisapia D., Sigaras A., Bhinder B., Romanel A., Wilkes D., Sticca E., Cyrta J., Rao R., Sahota S., Pauli C., Beg S., Motanagh S., Kossai M., Fontunge J., Puca L., Rennert H., Xiang J., Greco N., Kim R., Macdonald T., McNary T., Blattner-Johnson M., Schiffman M., Faltas B., Greenfield J., Rickman D., Andreopoulou E., Holcomb K., Vahdat L., Scherr D., Besien K., Barbieri C., Robinson B., Fine H., Ocean A., Molina A., Shah M., Nanus D., Pan Q., Demichelis F., Tagawa S., Song W., Mosquera J., Sboner A., Rubin M., Elemento O., and Beltran H., 2019, Integrative molecular analysis of patients with advanced and metastatic cancer, JCO Precision Oncology, 3: 1-12. https://doi.org/10.1200/po.19.00047 Sakellaropoulos T., Vougas K., Narang S., Koinis F., Kotsinas A., Polyzos A., Moss T., Piha-Paul S., Zhou H., Kardala E., Damianidou E., Alexopoulos L., Aifantis I., Townsend P., Panayiotidis M., Sfikakis P., Bartek J., Fitzgerald R., Thanos D., Shaw K., Petty R., Tsirigos A., and Gorgoulis V., 2019, A deep learning framework for predicting response to therapy in cancer, Cell Reports, 29(11): 3367-3373. https://doi.org/10.1016/j.celrep.2019.11.017 Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., De P., Krie A., Piccioni D., Miller V., Ross J., Ross J., Benson A., Webster J., Stephens P., Lee J., Fanta P., Lippman S., Leyland-Jones B., and Kurzrock R., 2019, Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study, Nature Medicine, 25: 744-750. https://doi.org/10.1038/s41591-019-0407-5 Sidey-Gibbons J., and Sidey-Gibbons C., 2019, Machine learning in medicine: a practical introduction, BMC Medical Research Methodology, 19: 64. https://doi.org/10.1186/s12874-019-0681-4 Silberberg G., Walling B., Wesa A., Audia A., Sloma I., Zeng Y., Han G., Tang J., Pammer P., Bakayoko A., Ciznadija D., Vishwakarma B., Mosesson Y., Zipeto M., and Ritchie M., 2022, Pharmaco-Pheno-Multiomic integration reveals biomarker profiles and therapeutic response prediction models in leukemia and ovarian cancer, bioRxiv, 7(1): 86-105. https://doi.org/10.1101/2022.06.14.495846 Sun R., Limkin E., Vakalopoulou M., Dercle L., Champiat S., Han S., Verlingue L., Brandao D., Lancia A., Ammari S., Hollebecque A., Scoazec J., Marabelle A., Massard C., Soria J., Robert C., Paragios N., Deutsch E., and Ferté C., 2018, A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study, The Lancet, Oncology, 19(9): 1180-1191. https://doi.org/10.1016/S1470-2045(18)30413-3 Uzilov A., Ding W., Fink M., Antipin Y., Brohl A., Davis C., Lau C., Pandya C., Shah H., Kasai Y., Powell J., Micchelli M., Castellanos R., Zhang Z., Linderman M., Kinoshita Y., Zweig M., Raustad K., Cheung K., Castillo D., Wooten M., Bourzgui I., Newman L., Deikus G., Mathew B., Zhu J., Glicksberg B., Moe A., Liao J., Edelmann L., Dudley J., Maki R., Kasarskis A., Holcombe R., Mahajan M., Hao K., Reva B., Longtine J., Starcevic D., Sebra R., Donovan M., Li S., Schadt E., and Chen R., 2016, Development and clinical application of an integrative genomic approach to personalized cancer therapy, Genome Medicine, 8: 62. https://doi.org/10.1186/s13073-016-0313-0 Wheeler D., Takebe N., Hinoue T., Hoadley K., Cardenas M., Hamilton A., Laird P., Wang L., Johnson A., Dewal N., Miller V., Piñeyro D., Moura M., Esteller M., Shen H., Zenklusen J., Tarnuzzer R., McShane L., Tricoli J., Williams P., Lubensky I., O'Sullivan-Coyne G., Kohn E., Little R., White J., Malik S., Harris L., Weil C., Chen A., Karlovich C., Rodgers B., Shankar L., Jacobs P., Nolan T., Hu J., Muzny D., Doddapaneni H., Korchina V., Gastier-Foster J., Bowen J., Leraas K., Edmondson E., Doroshow J., Conley B., Ivy S., and Staudt L., 2020, Molecular features of cancers exhibiting exceptional responses to treatment, Cancer Cell, 39(1): 38-53. https://doi.org/10.1016/j.ccell.2020.10.015 Xia F., Allen J., Balaprakash P., Brettin T., Garcia-Cardona C., Clyde A., Cohn J., Doroshow J., Duan X., Dubinkina V., Evrard Y., Fan Y., Gans J., He S., Lu P., Maslov S., Partin A., Shukla M., Stahlberg E., Wozniak J., Yoo H., Zaki G., Zhu Y., and Stevens R., 2021, A cross-study analysis of drug response prediction in cancer cell lines, Briefings in Bioinformatics, 23(1): bbab356. https://doi.org/10.1093/bib/bbab356 Xu Y., Hosny A., Zeleznik R., Parmar C., Coroller T., Franco I., Mak R., and Aerts H., 2019, Deep learning predicts lung cancer treatment response from serial medical imaging, Clinical Cancer Research, 25(11): 3266-3275. https://doi.org/10.1158/1078-0432.CCR-18-2495 Yi X., Zhang Y., Cai J., Hu Y., Wen K., Xie P., Yin N., Zhou X., and Luo H., 2023, Development and external validation of machine learning-based models for predicting lung metastasis in kidney cancer: a large population-based study, International Journal of Clinical Practice, 2023(1): 1-13. https://doi.org/10.1155/2023/8001899 Zhou Q., Gampenrieder S.P., Frantal S., Rinnerthaler G., Singer C.F., Egle D., Pfeiler G., Bartsch R., Wette V., Pichler A., Petru E., Dubsky P.C., Bago-Horvath Z., Fesl C., Rudas M., Ståhlberg A., Graf R., Weber S., Dandachi N., Filipits M., Gnant M., Balic M., and Heitzer E., 2022, Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a significant predictor of poor tumor response, Clin Cancer Res, 28(4): 697-707. https://doi.org/10.1158/1078-0432.CCR-21-3231

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==